A. | $x±\sqrt{2}y=0$ | B. | $\sqrt{2}x±y=0$ | C. | x±2y=0 | D. | 2x±y=0 |
分析 求得橢圓的焦點(diǎn),可設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),由題意可得c=$\sqrt{3}$,即a2+b2=3,將P(2,1)代入雙曲線的方程,解方程可得a,b,可得雙曲線的方程,進(jìn)而得到漸近線方程.
解答 解:橢圓$\frac{x^2}{4}+{y^2}=1$的焦點(diǎn)為(±$\sqrt{3}$,0),
可設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
由題意可得c=$\sqrt{3}$,即a2+b2=3,
將P(2,1)代入雙曲線的方程可得:
$\frac{4}{{a}^{2}}$-$\frac{1}{^{2}}$=1,解得a=$\sqrt{2}$,b=1,
即有雙曲線的方程為$\frac{{x}^{2}}{2}$-y2=1,
可得漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.
故選:A.
點(diǎn)評(píng) 本題考查雙曲線的漸近線方程的求法,注意運(yùn)用橢圓的焦點(diǎn)和點(diǎn)滿足雙曲線的方程,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $3\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 20 | C. | $2\sqrt{3}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 28 | C. | 20或32 | D. | 20或28 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com