【題目】某旅游勝地欲開發(fā)一座景觀山,從山的側(cè)面進行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點、開口向下,所在的拋物線以為頂點、開口向上,以過山腳(點)的水平線為軸,過山頂(點)的鉛垂線為軸建立平面直角坐標系如圖(單位:百米).已知所在拋物線的解析式,所在拋物線的解析式為

(1)求值,并寫出山坡線的函數(shù)解析式;

(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點處,(米),假設索道可近似地看成一段以為頂點、開口向上的拋物線當索道在上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?

【答案】1

(2)米 (3)第一級臺階的長度為厘米,第二級臺階的長度為厘米,第三級臺階的長度為厘米,這種臺階不能從山頂一直鋪到山腳.

【解析】

(1)將點點B(4,4)分別代入求出即可求得函數(shù)的解析式;

(2)由已知有索道在上方時,懸空高度

利用配方法可得=,再求最大值即可;

(3)由(1)得,在山坡線上,,,

,分別求出,

再運算可得各級臺階的長度,再取點,又取

運算可得,即這種臺階不能一直鋪到山腳,得解.

解:(1)將點B(4,4)分別代入,

解得

;

(2)由圖可知:,由圖觀察可得:只有當索道在上方時,索道的懸空高度才有可能取最大值,

索道在上方時,懸空高度==,

時,,

故索道的最大懸空高度為米;

(3)在山坡線上,,,

①令,得

所以第一級臺階的長度為(百米)(厘米),

同理,令

所以第一級臺階的長度為(百米)(厘米),

所以第二級臺階的長度為(百米)(厘米),

所以第三級臺階的長度為(百米)(厘米),

②取點,又取

,

因為,

故這種臺階不能從山頂一直鋪到點,從而就不能一直鋪到山腳.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[6080)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的準線過橢圓Cab0)的左焦點F,且點F到直線lc為橢圓焦距的一半)的距離為4.

1)求橢圓C的標準方程;

2)過點F做直線與橢圓C交于AB兩點,PAB的中點,線段AB的中垂線交直線l于點Q.,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角AB,C的對邊分別為ab,c.已知2cos(BC)14cosBcosC

)求A;

)若a2,△ABC的面積為2,求bc

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,橢圓的離心率為,圓上任意一點處的切線交橢圓于兩點,,當恰好位于軸上時,的面積為.

1)求橢圓的方程;

2)試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在四棱錐中,底面是正方形,側(cè)棱底面,,點的中點,作.

)求證:平面;

)求證:平面;

)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中學校決定開展數(shù)學知識競賽活動。各班級都進行了選拔,高三一班全體同學都參加了考試,將他們的分數(shù)進行統(tǒng)計,并作出如右圖的頻率分布直方圖和分數(shù)的莖葉圖(其中,莖葉圖中僅列出了得分在的數(shù)據(jù))

1)求高三一班學生的總數(shù)和頻率分布直方圖中a、b的值;

2)在高三一班學生中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生參加學校數(shù)學知識競賽,求所抽取的2名學生中至少有一人得分在[90,100]內(nèi)的概率。

查看答案和解析>>

同步練習冊答案