【題目】已知圓,橢圓的離心率為,圓上任意一點(diǎn)處的切線交橢圓于兩點(diǎn),當(dāng)恰好位于軸上時(shí),的面積為.

1)求橢圓的方程;

2)試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.

【答案】(1)(2)為定值且定值為,詳見(jiàn)解析

【解析】

1)根據(jù)題意,結(jié)合圖形特點(diǎn)求解出的長(zhǎng),再結(jié)合橢圓的離心率特點(diǎn)代換出關(guān)于的橢圓標(biāo)準(zhǔn)方程,將點(diǎn)坐標(biāo)代入橢圓方程即可求得標(biāo)準(zhǔn)方程

2)分兩種情況進(jìn)行討論,當(dāng)過(guò)點(diǎn)的圓的切線斜率為0或不存在時(shí),,當(dāng)斜率存在時(shí),設(shè)切線方程為,采用解析幾何方法聯(lián)立切線與橢圓標(biāo)準(zhǔn)方程,得出關(guān)于兩點(diǎn)橫坐標(biāo)的韋達(dá)定理,再用弦長(zhǎng)公式表示出,最終將表達(dá)式進(jìn)行化簡(jiǎn)求值即可

解:(1)由橢圓的離心率為,

∴橢圓的方程為.

由圓的切線性質(zhì)、圓的對(duì)稱性及的面積為得:

,∴,

設(shè),則,,將其代入橢圓方程得,

∴橢圓的方程為.

2)①當(dāng)過(guò)點(diǎn)的圓的切線斜率為0或不存在時(shí),

②當(dāng)過(guò)點(diǎn)的圓的切線斜率存在且不為0時(shí),設(shè)切線的方程為,

,,∴,即.

聯(lián)立直線和橢圓的方程得:,即

,

設(shè),則

,

,解得,

綜上所述,為定值且定值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

1:甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

1

5

18

19

6

1

1:乙套設(shè)備的樣本的頻率分布直方圖

1)將頻率視為概率. 若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中的不合格品約有多少件;

2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);

甲套設(shè)備

乙套設(shè)備

合計(jì)

合格品

不合格品

合計(jì)

0.15

0.10

0.050

2.072

2.706

3.841

:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,則下列命題正確的是(

A.當(dāng)時(shí),

B.函數(shù)3個(gè)零點(diǎn)

C.的解集為

D.,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游勝地欲開(kāi)發(fā)一座景觀山,從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點(diǎn)、開(kāi)口向下,所在的拋物線以為頂點(diǎn)、開(kāi)口向上,以過(guò)山腳(點(diǎn))的水平線為軸,過(guò)山頂(點(diǎn))的鉛垂線為軸建立平面直角坐標(biāo)系如圖(單位:百米).已知所在拋物線的解析式,所在拋物線的解析式為

(1)求值,并寫(xiě)出山坡線的函數(shù)解析式;

(2)在山坡上的700米高度(點(diǎn))處恰好有一小塊平地,可以用來(lái)建造索道站,索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)處,(米),假設(shè)索道可近似地看成一段以為頂點(diǎn)、開(kāi)口向上的拋物線當(dāng)索道在上方時(shí),索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開(kāi)始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階,臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得少于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).試求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米),并判斷這種臺(tái)階能否一直鋪到山腳,簡(jiǎn)述理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,為兩個(gè)不同的平面,,為兩條不同的直線,有以下命題:

①若,則.②若,,則.③若,,則.④若,,則.

其中真命題有()

A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

1)求直線和曲線的普通方程;

2)已知點(diǎn),且直線和曲線交于兩點(diǎn),求 的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面,,,的中點(diǎn),相交于點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出了關(guān)于復(fù)數(shù)的四種類比推理:

①?gòu)?fù)數(shù)的加減法運(yùn)算可以類比多項(xiàng)式的加減法運(yùn)算法則;

②由向量的性質(zhì),類比得到復(fù)數(shù)的性質(zhì);

③方程有兩個(gè)不同實(shí)數(shù)根的條件是可以類比得到方程有兩個(gè)不同復(fù)數(shù)根的條件是;

④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義,其中類比錯(cuò)誤的是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若是單調(diào)函數(shù),求的值;

2)若對(duì),恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案