已知數(shù)列:
(1)觀察規(guī)律,寫出數(shù)列的通項(xiàng)公式,它是個(gè)什么數(shù)列?
(2)若,設(shè) ,求。
(3)設(shè),為數(shù)列的前項(xiàng)和,求。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列、滿足.
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前n項(xiàng)和,數(shù)列{}滿足=.
(I)求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列{}的前n項(xiàng)和為Tn,求滿足的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)等差數(shù)列中,已知,試求n的值
(2)在等比數(shù)列中,,公比,前項(xiàng)和,求首項(xiàng) 和項(xiàng)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知數(shù)列的前項(xiàng)和為,,,求
(2)已知等差數(shù)列的前項(xiàng)和為,求數(shù)列的前2012項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且滿足 (),,設(shè),.
(1)求證:數(shù)列是等比數(shù)列;
(2)若≥,,求實(shí)數(shù)的最小值;
(3)當(dāng)時(shí),給出一個(gè)新數(shù)列,其中,設(shè)這個(gè)新數(shù)列的前項(xiàng)和為,若可以寫成 (且)的形式,則稱為“指數(shù)型和”.問中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)p、q是正整數(shù),且p≠q. 證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知等差數(shù)列{}的前n項(xiàng)和為Sn,且=
(1)求通項(xiàng);
(2)求數(shù)列{}的前n項(xiàng)和的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com