已知f(x)=4x+ax2-x3(x∈R)在區(qū)間[-1,1]上是增函數(shù),
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=2x+x3的兩個(gè)非零實(shí)根為x1、x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由。
解:(Ⅰ)f'(x)=4+2ax-2x2,
∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對(duì)x∈[-1,1]恒成立,即x2-ax-2≤0對(duì)x∈[-1,1]恒成立, ①
設(shè)ψ(x)=x2-ax-2,
,
∵對(duì)x∈[-1,1],只有當(dāng)a=1時(shí),f'(-1)=0以及當(dāng)a=-1時(shí),f'(1)=0,
∴A={a|-1≤a≤1};
(Ⅱ)由,得x=0或,
∵△=a2+8>0,
∴x1,x2是方程x2-ax-2=0的兩非零實(shí)根,x1+x2=a,x1x2=-2,
從而|x1-x2|==,
∵-1≤a≤1,
∴|x1-x2|=≤3,
要使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,
當(dāng)且僅當(dāng)m2+tm+1≥3對(duì)任意t∈[-1,1]恒成立,
即m2+tm-2≥0對(duì)任意t∈[-1,1]恒成立, ②
設(shè)g(t)=m2+tm-2=mt+(m2-2),
g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,m≥2或m≤-2,
所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,
其取值范圍是{m|m≥2或m≤-2}。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
4x+a4x+1
是奇函數(shù),
(1)求常數(shù)a的值;  
(2)求f(x)的定義域和值域;
(3)討論f(x)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
4x+1
2x+m
存在
反函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-
1
2
)
B、(-∞,
1
2
)
C、(-∞,-
1
2
)∪(-
1
2
,+∞)
D、(-∞,
1
2
)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=4x+ax2-x3(x∈R)在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A.

(2)設(shè)關(guān)于x的方程f(x)=2x+x3的兩個(gè)非零實(shí)根為x1、x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)于任意aAt∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=4xax2x3(x∈R)在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)=
4x+1
2x+m
存在
反函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-
1
2
)
B.(-∞,
1
2
)
C.(-∞,-
1
2
)∪(-
1
2
,+∞)
D.(-∞,
1
2
)∪(
1
2
,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案