【題目】某學(xué)習軟件以數(shù)學(xué)知識為題目設(shè)置了一項闖關(guān)游戲,共有15關(guān),每過一關(guān)可以得到一定的積分,現(xiàn)有三種積分方案供闖關(guān)者選擇.方案一:每闖過一關(guān)均可獲得40積分;方案二:闖過第一關(guān)可獲得5積分,后面每關(guān)的積分都比前一關(guān)多5;方案三:闖過第一關(guān)可獲得0.5積分,后面每關(guān)的積分都是前一關(guān)積分的2.若某關(guān)闖關(guān)失敗則停止游戲,最終積分為闖過的各關(guān)的積分之和,設(shè)三種方案闖過n)關(guān)后的積分之和分別為,要求闖關(guān)者在開始前要選擇積分方案.

1)求出的表達式;

2)為獲得盡量多的積分,如果你是一個闖關(guān)者,試分析這幾種積分方案該如何選擇?小明通過試驗后覺得自己至少能闖過12關(guān),則他應(yīng)該選擇第幾種積分方案?

【答案】1;2)見解析,小明應(yīng)該選擇方案三.

【解析】

1)根據(jù)題意,分別得到各方案所對應(yīng)的數(shù)列,從而得到

2)令,分別得到的范圍,結(jié)合題意中的,從而做出判斷.

1)按方案一闖過各關(guān)所得積分構(gòu)成常數(shù)數(shù)列,故;

按方案二闖過各關(guān)所得積分構(gòu)成首項為5,公差為5的等差數(shù)列,故;

按方案三闖過各關(guān)所得積分構(gòu)成首項為,公比為2的等比數(shù)列,故

2)令,即,解得,

而當時,,

又因為,故恒成立,

故方案二不予考慮.

,即,解得

故有,當時,;當,

故當能闖過的關(guān)數(shù)小于10時,應(yīng)選擇方案一;

當能闖過的關(guān)數(shù)大于等于10時,應(yīng)選擇方案三.

小明應(yīng)該選擇方案三.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,該橢圓與軸正半軸交于點,且是邊長為的等邊三角形.

1)求橢圓的標準方程;

2)過點任作一直線交橢圓于兩點,平面上有一動點,設(shè)直線,,的斜率分別為,,且滿足,求動點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值點;

(Ⅱ)若直線過點,并且與曲線相切,求直線的方程;

(Ⅲ)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為 ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C)的左、右焦點分別是、,離心率為,過且垂直于軸的直線被橢圓C截得的線段長為3

1)求橢圓C的方程;

2)點P是橢圓C上除長軸端點外的任一點,連接、,設(shè)的角平分線PMC的長軸于點,求m的取值范圍;

3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點設(shè)直線的斜率分別為、,若,試證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點處的切線方程為,求的值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了促進學(xué)生的全面發(fā)展,某市教育局要求本市所有學(xué)校重視社團文化建設(shè),2014年該市某中學(xué)的某新生想通過考核選撥進入該校的“電影社”和“心理社”,已知該同學(xué)通過考核選撥進入這兩個社團成功與否相互獨立根據(jù)報名情況和他本人的才藝能力,兩個社團都能進入的概率為,至少進入一個社團的概率為,并且進入“電影社”的概率小于進入“心理社”的概率

(Ⅰ)求該同學(xué)分別通過選撥進入“電影社”的概率和進入心理社的概率;

(Ⅱ)學(xué)校根據(jù)這兩個社團的活動安排情況,對進入“電影社”的同學(xué)增加1個校本選修課學(xué)分,對進入“心理社”的同學(xué)增加0.5個校本選修課學(xué)分.求該同學(xué)在社團方面獲得校本選修課學(xué)分分數(shù)不低于1分的概率.

查看答案和解析>>

同步練習冊答案