1.在△ABC中,若ac=a2+c2-b2,則角B的大小為( 。
A.30°B.45°C.60°D.120°

分析 直接利用余弦定理化簡(jiǎn)求解即可.

解答 解:因?yàn)閍c=a2+c2-b2,所以cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{1}{2}$,
所以B=60°.
故選:C.

點(diǎn)評(píng) 本題考查三角形的解法,余弦定理的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ex-ax-1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值;
(Ⅲ)求證:$ln[{1+\frac{2×3}{{{{(3-1)}^2}}}}]+ln[{1+\frac{{2×{3^2}}}{{{{({3^2}-1)}^2}}}}]+…+ln[{1+\frac{{2×{3^n}}}{{{{({3^n}-1)}^2}}}}]<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線(xiàn)重合,則實(shí)數(shù)a的取值范圍是(  )
A.(2,+∞)B.(-∞,$\frac{1}{4}$)C.(-2,$\frac{1}{4}$)D.(-∞,-2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)隨機(jī)變量X的分布列為$P(X=i)=a•{({\frac{2}{3}})^i}i=1,2,3$,則a的值為( 。
A.$\frac{17}{38}$B.$\frac{27}{38}$C.$\frac{17}{19}$D.$\frac{27}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)$f(x)=\frac{x^3}{3}-\frac{a}{2}{x^2}+x+1$在區(qū)間$[\frac{1}{2},3]$上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛(ài)游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計(jì)
男生10
女生20
合計(jì)
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρcosθ=a(a>0),Q為l上一點(diǎn),以O(shè)Q為邊作等邊三角形OPQ,且O、P、Q三點(diǎn)按逆時(shí)針?lè)较蚺帕校?br />(Ⅰ)當(dāng)點(diǎn)Q在l上運(yùn)動(dòng)時(shí),求點(diǎn)P運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;
(Ⅱ)若曲線(xiàn)C:x2+y2=a2,經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲線(xiàn)C′,試判斷點(diǎn)P的軌跡與曲線(xiàn)C′是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒(méi)有則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,桌面上放置了紅、黃、藍(lán)三個(gè)不同顏色的杯子,杯子口朝上,我們做蒙眼睛翻杯子(杯口朝上的翻為杯口朝下,杯口朝下的翻為杯口朝上)的游戲.
(1)隨機(jī)翻一個(gè)杯子,求翻到黃色杯子的概率;
(2)隨機(jī)翻一個(gè)杯子,接著從這三個(gè)杯子中再隨機(jī)翻一個(gè),請(qǐng)利用樹(shù)狀圖求出此時(shí)恰好有一個(gè)杯口朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系中,直線(xiàn)L的參數(shù)方程為$\left\{\begin{array}{l}{x=3-tcos\frac{3π}{4}}\\{y=\sqrt{5}+tsin\frac{3π}{4}}\end{array}\right.$(t為參數(shù)).在以原點(diǎn) O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,圓C的方程為$ρ=2\sqrt{5}sinθ$.
(Ⅰ)寫(xiě)出直線(xiàn)L的傾斜角α和圓C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn) P坐標(biāo)為$({3,\sqrt{5}})$,圓C與直線(xiàn)L交于 A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案