f(x)=x3-3x-3有零點的區(qū)間是( 。
分析:由函數(shù)零點存在的定理知,可驗證區(qū)間端點的符號,兩兩端點函數(shù)值的符號相反則存在零點,利用此規(guī)律驗證,找出正確選項
解答:解:由題意,知
當x=-1,0,1,2,3時,y的值是-1,-3,-5,-1,15
由零點判定定理知,f(x)=x3-3x-3有零點的區(qū)間是(2,3)
故選D
點評:本題考查函數(shù)零點的判定定理,解題的關(guān)鍵是理解定理,掌握零點判官的規(guī)則與步驟,本題是基本概念考查題,考查了轉(zhuǎn)化的思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)對于函數(shù)f(x),若存在區(qū)間M=[a,b],使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的-個“好區(qū)間”.給出下列4個函數(shù):
①f(x)=sinx;
②f(x)=|2x-1|;
③f(x)=x3-3x;
④f(x)=lgx+l.
其中存在“好區(qū)間”的函數(shù)是
②③④
②③④
.  (填入相應函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x+m只有兩個零點,則實數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x-1,
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=m與y=f(x)的圖象有三個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+3x.
(1)判斷f(x)的奇偶性,證明你的結(jié)論;
(2)當a在何范圍內(nèi)取值時,關(guān)于x的方程f(x)=a在x∈(-1,1]上有解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)已知函數(shù)f(x)=-x3+3x
(I)證明:函數(shù)f(x)是奇函數(shù);
(II)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案