【題目】設(shè)點(diǎn)是拋物線上的動點(diǎn),是的準(zhǔn)線上的動點(diǎn),直線過且與(為坐標(biāo)原點(diǎn))垂直,則點(diǎn)到的距離的最小值的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
設(shè)出點(diǎn)坐標(biāo),表示出直線,將點(diǎn)到直線的距離轉(zhuǎn)化成,與直線平行且與拋物線相切的直線與直線間的距離.再找到其取值范圍.
拋物線的準(zhǔn)線方程是
若點(diǎn)的坐標(biāo)為,此時直線的方程為,
顯然點(diǎn)到直線的距離的最小值是1
若點(diǎn)的坐標(biāo)為,其中
則直線的斜率為
直線的斜率為
直線的方程為
即,
設(shè)與直線平行且與拋物線相切的直線方程為
代入拋物線方程得
所以
解得
所以與直線平行且與拋物線相切的直線方程為
所以點(diǎn)到直線的距離的最小值為直線與直線的距離,即
因為
所以
綜合兩種情況可知點(diǎn)到直線的距離的最小值的取值范圍是
所以選B項.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足a1+a4=18,a2+a5=36.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{bn}滿足bn=an+log2an,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 1級優(yōu) | 2級良 | 3級輕度污染 | 4級中度污染 | 5級重度污染 | 6級嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?
(Ⅱ)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費(fèi)用為1000元,空氣質(zhì)量等量等級為3級時每天需凈化空氣的費(fèi)用為2000元.若從這10天樣本中空氣質(zhì)量為1級、2級、3級的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用為3000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)用支出(百萬)與銷售額(百萬)之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費(fèi)用為10(百萬)時,銷售收入的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的6月8日確定為“世界海洋日”.2019年6月8日,某大學(xué)的行政主管部門從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組,第二組,第二組,第四組,第五組,得到頻率分布直方圖如下圖:
(1)求實數(shù)的值;
(2)若從第二組、第五組的學(xué)生中按組用分層抽樣的方法抽取9名學(xué)生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機(jī)抽樣方法從9人中抽取2人作為正、副隊長,求“抽取的2人為不同組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,我國某海岸線可看作由圓弧AB和射線BC連接而成,其中圓弧AB所在圓O的半徑為12海里,圓心角為120°,規(guī)定外輪除特許外,不得進(jìn)入離我國海岸線12海里以內(nèi)的區(qū)域.在港口A處設(shè)有觀察站,外輪一旦進(jìn)入規(guī)定區(qū)域,觀察站會接收到預(yù)警信號,現(xiàn)從A處測得一外輪在北偏東60°,距離港口x海里的P處,沿直線PA方向航行.
(1)當(dāng)x=30時,分別求出外輪到海岸線BC和弧AB的最短距離,并判斷觀察站是否接收到預(yù)警信號?
(2)當(dāng)x為何值時,觀察站開始接收到預(yù)警信號?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c為△ABC的三個內(nèi)角A、B、C的對邊,向量=(-1,),=(cosA,sinA),若⊥,且acosB+bcosA=csinC,則角B的大小為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點(diǎn)分別為,P是橢圓上位于第一象限內(nèi)的點(diǎn),軸,垂足為Q,,,的面積為.
(1)求橢圓F的方程:
(2)若M是橢圓上的動點(diǎn),求的最大值,并求出取得最大值時M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com