7.若$\overrightarrow{a}$和$\overrightarrow$是兩個互相垂直的單位向量,則|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{5}$.

分析 計算($\overrightarrow{a}+2\overrightarrow$)2,然后開方即可.

解答 解:∵$\overrightarrow{a}$和$\overrightarrow$是兩個互相垂直的單位向量,
∴${\overrightarrow{a}}^{2}={\overrightarrow}^{2}=1$,$\overrightarrow{a}•\overrightarrow=0$.
∴($\overrightarrow{a}+2\overrightarrow$)2=${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$=5,
∴|$\overrightarrow{a}+2\overrightarrow$|=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知拋物線C:y2=2px(p>0)的焦點坐標為(1,0),則p=2;若拋物線C上一點A到其準線的距離與到原點距離相等,則A點到x軸的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知定點F(0,1),動點M(a,-1)(a∈R),線段FM的中垂線l與直線x=a交于點P.
(1)求動點P的軌跡Г的方程;
(2)當△PFM為正三角形時,過點P作直線l的垂線,交軌跡Г于P,Q兩點,求證:點F在以線段PQ為直徑的圓內.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.閱讀如圖的程序框圖,運行相應的程序,則輸出S的值為( 。
A.1B.$\frac{4}{3}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設z滿足i(1+z)=2+i,則|z|=( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某農(nóng)場用甲、乙兩種不同的方式培育了一批甘蔗苗,培育一段時間后,同時隨機抽取兩種方式培育的甘蔗苗各15株,測量其高度,得到如圖的莖葉圖(單位:cm)
(Ⅰ)依莖葉圖判斷用哪種方式培育的甘蔗苗平均高度值較大?
(Ⅱ)如果規(guī)定甘蔗苗高度不低于85cm的為生長優(yōu)秀,請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷能否有99%的把握認為甘蔗苗高度與培育方式有關”
甲方式乙方式合計
優(yōu)秀
不優(yōu)秀
合計
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n({ad-cd)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設曲線y=f(x)與曲線y=x2+1(x<0)關于y=x對稱,則f(x)的定義域為( 。
A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-ay-2≤0}\end{array}}\right.$,已知z=2x+y的最大值是7,最小值是-26,則實數(shù)a的值為( 。
A.6B.-6C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c且3b=2$\sqrt{3}$c.
(1)若B=2C,求sinB的值;
(2)若c=3,△ABC的面積為3$\sqrt{2}$,求a.

查看答案和解析>>

同步練習冊答案