【題目】已知在△ABC中,三條邊所對的角分別為A、B,C,向量=(),=(),且滿足=.
(1)求角C的大;
(2)若sinA,sinC,sinB成等比數列,且 =﹣8,求邊的值并求△ABC外接圓的面積.
【答案】(1) (2)
【解析】試題分析:(1)由向量的數量積公式和向量的坐標,可知sin(A+B)=2sinCcosC,所以cosC=,,可解得C=。(2)由等比數列可得sin2C=sinAsinB,代入正弦定理可得c2=ab,由數量積可得=﹣8,所以ab=16,c=4,由正弦定理,可求得外接圓半徑。
試題解析:(1)∵向量=(sinA,cosA),=(cosB,sinB),且滿足=sin2C,
∴sin(A+B)=2sinCcosC,
∴cosC=,∴C=;
(2)∵sinA,sinC,sinB成等比數列
∴sin2C=sinAsinB,∴c2=ab,
∵(﹣)=﹣8,∴=﹣8,∴ab=16,∴c=4,
設外接圓的半徑為R,由正弦定理可知:2R=
∴R=,∴S=.
科目:高中數學 來源: 題型:
【題目】已知函數(為常數,=2.71828……是自然對數的底數),曲線在點處的切線與軸平行.
(1)求的值;
(2)求的單調區(qū)間;
(3)設,其中是的導函數.證明:對任意>0,<.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】否定“自然數、、中恰有一個偶數”時正確的反設為( )
A. 、、都是奇數 B. 、、至少有兩個偶數
C. 、、都是偶數 D. 、、中都是奇數或至少有兩個偶數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次購物抽獎活動中,假設某10張券中有一等獎1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有將;某顧客從此10張券中任取2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值(元)的概率分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了解2017屆高三學生的性別和喜愛游泳是否有關,對100名高三學生進行了問卷調查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為.
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,以原點為圓心的兩個同心圓,其中,大圓的半徑為 ,小圓的半徑為,點為大圓上一動點,連接,與小圓交于點,過點作軸的垂線,垂足為,過點作直線的垂線,垂足為,點,記.
(1)求點的坐標(用含有的式子表示),并寫出點的軌跡方程,指出點的軌跡是什么曲線;
(2)設點的軌跡為,點分別是曲線上的兩個動點,且,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-5:不等式選講
已知函數f(x)=|2x+1|+|2x-a|.
(I)若f(x)的最小值為2,求a的值;
(II)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com