精英家教網 > 高中數學 > 題目詳情

【題目】在橢圓上,過軸的垂線,垂足為

1)若點滿足,試求點的軌跡的方程;

2)直線相交于,兩點,且與(1)中的相切,線段的垂直平分線與軸相交于點,求的取值范圍.

【答案】(1);(2).

【解析】

(1)設,,的坐標由向量間的關系,求出的坐標之間的關系,再由相關點法求出的軌跡方程.

(2)設直線,聯(lián)立與兩個切線的方程,由題意得與直線參數的關系,由參數的范圍求出的取值范圍.

解:(1)設,則,,,

,所以,解得:,

在橢圓上,所以動點的軌跡的方程:.

(2)當直線 的斜率不存在時,不符合題意,舍去;

當直線的斜率存在時,設直線的方程為:

聯(lián)立與橢圓的方程,整理得:

,化簡得:

因為直線與橢圓交于,,設,,的中點

聯(lián)立直線與橢圓的方程整理得:

,,

,所以的中垂線方程:

,得,所以②,由①②得

,則

所以的取值范圍:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】近來國內一些互聯(lián)網公司為了贏得更大的利潤、提升員工的奮斗姿態(tài),要求員工實行“996”工作制,即工作日早9點上班,晚上21點下班,中午和傍晚最多休息1小時,總計工作10小時以上,并且一周工作6天的工作制度,工作期間還不能請假,也沒有任何補貼和加班費.消息一出,社交媒體一片嘩然,有的人認為這是違反《勞動法》的一種對員工的壓榨行為,有的人認為只有付出超越別人的努力和時間,才能夠實現(xiàn)想要的成功,這是提升員工價值的一種有效方式.對此,國內某大型企業(yè)集團管理者認為應當在公司內部實行“996”工作制,但應該給予一定的加班補貼(單位:百元),對于每月的補貼數額集團人力資源管理部門隨機抽取了集團內部的1000名員工進行了補貼數額(單位:百元)期望值的網上問卷調查,并把所得數據列成如下所示的頻數分布表:

1)求所得樣本的中位數(精確到百元);

2)根據樣本數據,可近似地認為員工的加班補貼服從正態(tài)分布,若該集團共有員工40000人,試估計有多少員工期待加班補貼在8100元以上;

3)已知樣本數據中期望補貼數額在范圍內的8名員工中有5名男性,3名女性,現(xiàn)選其中3名員工進行消費調查,記選出的女職員人數為,求的分布列和數學期望.

附:若,則,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,所在平面互相垂直,且,,分別為,的中點.

(1)求證:;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,

1求證:平面平面

2,求二面角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ) 求函數的單調區(qū)間;

(Ⅱ) 時,求函數上最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】撫州市某中學利用周末組織教職員工進行了一次秋季登軍峰山健身的活動,有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.

1)求之間的參加者人數

2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機選取名擔任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數為2人的概率.

3)已知之間各有名數學教師,現(xiàn)從這兩個組中各選取人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中都至少有名數學教師的概率?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?

(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數;

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.

1)求出動點P的軌跡對應曲線C的標準方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,且,

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案