8.各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=a${\;}_{n}^{2}$+an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)通過2Sn=a${\;}_{n}^{2}$+an與當(dāng)n≥2時2Sn-1=${{a}_{n-1}}^{2}$+an-1作差,進(jìn)而整理可知an-an-1=1,求出首項(xiàng)、利用等差數(shù)列的通項(xiàng)公式計(jì)算即得結(jié)論;
(2)通過(1)裂項(xiàng)可知bn=$\frac{1}{n}$-$\frac{1}{n+1}$,進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 解:(1)∵2Sn=a${\;}_{n}^{2}$+an,
∴當(dāng)n≥2時,2Sn-1=${{a}_{n-1}}^{2}$+an-1,
兩式相減得:2an=${{a}_{n}}^{2}$+an-${{a}_{n-1}}^{2}$-an-1,
整理得:(an-an-1)(an+an-1)=an+an-1
∵數(shù)列{an}的各項(xiàng)均為正數(shù),
∴an-an-1=1,
又∵2S1=${{a}_{1}}^{2}$+a1,即a1=1,
∴數(shù)列{an}的通項(xiàng)公式an=n;
(2)由(1)可知bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$(n∈N*),
∴Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{n}^{2}+1}$(n∈N*),則a2等于( 。
A.1+$\frac{1}{2}$B.$\frac{1}{5}$C.1$+\frac{1}{2}$$+\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$D.非以上答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}前n項(xiàng)和為Sn,若Sn=2an-2n,則Sn=n•2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)公差不為0的等差數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及Sn;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,tn=$\frac{1}{{a}_{{2}^{n-1}}}$,且Bn,Tn分別為數(shù)列{bn},{tn}的前n項(xiàng)和,比較Bn與Tn+$\frac{1}{{2}^{n-1}}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的通項(xiàng)公式an=5-n,其前n項(xiàng)和為Sn,將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來順序恰為等比數(shù)列{bn}的前3項(xiàng),記{bn}的前n項(xiàng)和為Tn,若存在m∈N*,使對任意n∈N*,總有Sn<Tn+λ恒成立,則實(shí)數(shù)λ的取值范圍是( 。
A.λ≥2B.λ>3C.λ≥3D.λ>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=2n+1
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d為實(shí)常數(shù))在x=0處取得極小值2,且曲線y=f(x)在x=3處的切線方程為3x+y-11=0.
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)h1(x)=ex+t[f′(x)+x2-x],h2(x)=t[f′(x)+x2-x]-lnx.其中t為實(shí)常數(shù),試探究是否存在區(qū)間M,使得h1(x)和h2(x)在區(qū)間M上具有相同的單調(diào)性,若存在,說明區(qū)間M應(yīng)滿足的條件及對應(yīng)t的取值范圍,并指出h1(x)和h2(x)在區(qū)間M上的單調(diào)性;若不存在.請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于x的方程x2+4|x|+$\frac{2}{{{x^2}+4|x|}}$=3的最大實(shí)數(shù)根是$\sqrt{6}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.家用電腦桌的桌面采用直線與弧線相結(jié)合,前部采用弧線,后部改用直線型.現(xiàn)將電腦桌靠在墻邊,沿墻面建立如圖所示的直角坐標(biāo)系.弧線EF的方程為y=$\frac{60}{x}$(5≤x≤12).鍵盤抽屜所在直線x+y-16=0與弧線交于A,B兩點(diǎn).?dāng)M在弧線EF上選取一點(diǎn)P分別作x軸、y軸的垂線.垂足為C,D.四邊形OCPD(O為坐標(biāo)原點(diǎn))與三角形OAB的公共區(qū)域內(nèi)放置電腦.設(shè)點(diǎn)P的坐標(biāo)為(x,y).公共部分面積為S.(單位:分米)
(1)求S關(guān)于x的表達(dá)式:
(2)求S的最大值及此時x的值.

查看答案和解析>>

同步練習(xí)冊答案