【題目】已知函數(shù) (a>0且a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若1是函數(shù)y=f(x)+x的零點(diǎn),求實(shí)數(shù)a的值.

【答案】
(1)解:因?yàn)楹瘮?shù)f(x)為奇函數(shù),則f(﹣x)+f(x)=0,即 ,

,

所以

故有m2=4,所以m=±2,

當(dāng)m=﹣2時(shí), =﹣1<0不成立,

當(dāng)m=2時(shí), ,經(jīng)驗(yàn)證成立,

所以m=2


(2)解:由(1)知 ,

∵1是函數(shù)y=f(x)+x的零點(diǎn),

∴f(1)+1=0,

即loga3=1,

解得a=3


【解析】(1)根據(jù)奇函數(shù)滿(mǎn)足f(-x)+f(x)=0列出方程解出m,并檢驗(yàn);(2)當(dāng)x0是函數(shù)f(x)的零點(diǎn)時(shí),f(x0)=0.
【考點(diǎn)精析】掌握函數(shù)奇偶性的性質(zhì)和函數(shù)的零點(diǎn)與方程根的關(guān)系是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點(diǎn). (Ⅰ)證明:AC⊥D1E;
(Ⅱ)求DE與平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一點(diǎn)P,使得BP∥平面AD1E?若存在,求DP的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 =(3 sinx, cosx), =(cosx, cosx),f (x)=
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)x∈[﹣ , ]時(shí),g(x)=f(x)+m的最大值為 ,求g(x)的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定個(gè)人稿費(fèi)納稅方法為:不超過(guò)800元的不納稅,超過(guò)800且不超過(guò)4000元的按超過(guò)800元的部分14%納稅,超過(guò)4000元的按全部稿費(fèi)的11%納稅,
(1)試根據(jù)上述規(guī)定建立某人所得稿費(fèi)x元與納稅額y元的函數(shù)關(guān)系;
(2)某人出了一本書(shū),獲得20000元的個(gè)人稿費(fèi),則這個(gè)人需要納稅是多少元?
(3)某人發(fā)表一篇文章共納稅70元,則這個(gè)人的稿費(fèi)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是( )
A.y=x與
B.y=x與
C.y=2lgx與y=lgx2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y= 的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R). (Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過(guò)橢圓M: (a>b>0)右焦點(diǎn)的直線(xiàn)x+y﹣ =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為 . (Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線(xiàn)CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)x2+y=8與x軸交于A,B兩點(diǎn),動(dòng)點(diǎn)P與A,B連線(xiàn)的斜率之積為
(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)MN是動(dòng)點(diǎn)P軌跡C的一條弦,且直線(xiàn)OM,ON的斜率之積為 .求 的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案