13.已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,則a的取值范圍是( 。
A.[e,+∞)B.$[\frac{e^2}{2},+∞)$C.$[\frac{e^2}{2},{e^2})$D.[e2,+∞)

分析 問(wèn)題轉(zhuǎn)化為$a≥\frac{x}{lnx}$對(duì)x∈(e,e2]都成立,令$h(x)=\frac{x}{lnx}$,求出h(x)的導(dǎo)數(shù),通過(guò)討論函數(shù)h(x)的單調(diào)性,求出h(x)的最大值,從而求出a的范圍即可.

解答 解:若不等式f(x)≥x對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,
即alnx-bx2≥x對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,
即alnx-x≥bx2對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,
即alnx-x≥0對(duì)x∈(e,e2]都成立,即$a≥\frac{x}{lnx}$對(duì)x∈(e,e2]都成立,
即a大于等于$\frac{x}{lnx}$在區(qū)間(e,e2]上的最大值,
令$h(x)=\frac{x}{lnx}$,則$h'(x)=\frac{lnx-1}{{{{(lnx)}^2}}}$,
當(dāng)x∈(e,e2]時(shí),h'(x)>0,h(x)單調(diào)遞增,
所以$h(x)=\frac{x}{lnx}$,x∈(e,e2]的最大值為$h({e^2})=\frac{e^2}{2}$,即$a≥\frac{e^2}{2}$,
所以a的取值范圍為$[\frac{e^2}{2},+∞)$.
故選:B

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C的對(duì)應(yīng)邊分別是a,b,c,A>B,cosC=$\frac{5}{13}$,cos(A-B)=$\frac{3}{5}$.
(1)求cos2A的值;
(2)若c=15,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求證:當(dāng)x>0時(shí),1-$\frac{1}{x}$≤lnx≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a是常數(shù).
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱q(x)為p(x)在D上的“線上函數(shù)”.證明:當(dāng)a<1時(shí),g(x)為f(x)在(0,+∞)上的“線上函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x+1-alnx (a∈R)
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=2處取到極值,對(duì)?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=x3+$\frac{3}{x}$在(0,+∞)上的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,則$\frac{y}{x-3}$的最小值為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex-$\frac{a}{2}$x2e|x|
(1)若f(x)在[0,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)關(guān)于x的方程ax+1+xlnx=f(x)+$\frac{a}{2}$x2ex是否存在實(shí)根?若存在,請(qǐng)指出有幾個(gè)實(shí)根,若不存在,請(qǐng)說(shuō)明理由;
(3)求證:當(dāng)a≥1時(shí)f(x)≤x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.?dāng)?shù)列{an}中,若ai=k2(2k≤i<2k+1,i∈N*,k∈N),則滿足ai+a2i≥100的i的最小值為128.

查看答案和解析>>

同步練習(xí)冊(cè)答案