【題目】下列命題中正確的是( )
A.過平面外一點作這個平面的垂面有且只有一個
B.過直線外一點作這條直線的平行平面有且只有一個
C.過直線外一點作這條直線的垂線有且只有一條
D.過平面外的一條斜線作這個平面的垂面有且只有一個
【答案】D
【解析】
A錯誤;如圖長方體中,
是平面ABCD外一點,平面
B錯誤;是直線AB外一點,
C錯誤;是直線AB外一點,
D正確;是平面ABCD的一條斜線,平面假設(shè)過做一個平面則這與是平面ABCD的一條斜線矛盾。
所以過平面外的一條斜線作這個平面的垂面有且只有一個。故選D
【考點精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點,以及對空間中直線與平面之間的位置關(guān)系的理解,了解直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國Ⅳ標(biāo)準(zhǔn)規(guī)定:輕型汽車的屢氧化物排放量不得超過80mg/km.根據(jù)這個標(biāo)準(zhǔn),檢測單位從某出租車公司運營的A、B兩種型號的出租車中分別抽取5輛,對其氮氧化物的排放量進(jìn)行檢測,檢測結(jié)果記錄如表(單位:mg/km)
A | 85 | 80 | 85 | 60 | 90 |
B | 70 | x | 95 | y | 75 |
由于表格被污損,數(shù)據(jù)x,y看不清,統(tǒng)計員只記得A、B兩種出租車的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x與y的值;
(2)從被檢測的5輛B種型號的出租車中任取2輛,記“氮氧化物排放量超過80mg/km”的車輛數(shù)為X,求X=1時的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為,以原點為圓心,橢圓的長半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點為動直線與橢圓的兩個交點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標(biāo)和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,左焦點是.
(1)若左焦點與橢圓的短軸的兩個端點是正三角形的三個頂點,點在橢圓上.求橢圓的方程;
(2)過原點且斜率為的直線與(1)中的橢圓交于不同的兩點,設(shè),求四邊形的面積取得最大值時直線的方程;
(3)過左焦點的直線交橢圓于兩點,直線交直線于點,其中是常數(shù),設(shè), ,計算的值(用的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐的底面圓心為,直徑為, 為半圓弧的中點, 為劣弧的中點,且.
(1)求異面直線與所成的角的大。
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
(Ⅰ)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(Ⅱ)問:是否存在常數(shù),當(dāng)時, 的值域為區(qū)間,且的長度為.(說明:對于區(qū)間,稱為區(qū)間長度)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(cosx﹣sinx)sin(x+)﹣2asinx+b(a>0).
(1)若b=1,且對任意 , 恒有f(x)>0,求a的取值范圍;
(2)若f(x)的最大值為1,最小值為﹣4,求實數(shù)a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com