【題目】已知橢圓: ,左焦點(diǎn)是.
(1)若左焦點(diǎn)與橢圓的短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上.求橢圓的方程;
(2)過原點(diǎn)且斜率為的直線與(1)中的橢圓交于不同的兩點(diǎn),設(shè),求四邊形的面積取得最大值時(shí)直線的方程;
(3)過左焦點(diǎn)的直線交橢圓于兩點(diǎn),直線交直線于點(diǎn),其中是常數(shù),設(shè), ,計(jì)算的值(用的代數(shù)式表示).
【答案】(1)(2)(3)
【解析】試題分析:(1)利用已知條件列方程組求出 的值,從而求出橢圓的標(biāo)準(zhǔn)方程; (2)設(shè)直線 的方程 ,聯(lián)立直線和橢圓方程,求出 ,分別求出點(diǎn) 到直線的距離,求出四邊形 的面積,利用基本不等式求出最大值得到 ,再求出直線 的方程; (3)設(shè)直線 的方程為 ,聯(lián)立直線和橢圓方程,求出兩根之和,兩根之積, 由向量共線求出 的表達(dá)式,代入化簡,求出 的值.
試題解析:(1) , 所以橢圓方程
(2)設(shè)直線的方程
聯(lián)立,可以計(jì)算
,
所以直線的方程是
(3)設(shè)直線的方程交橢圓于
直線交直線于點(diǎn),根據(jù)題設(shè), 得到
, ,
得,
點(diǎn)睛: 本題主要考查了求橢圓的方程, 四邊形面積的計(jì)算, 以及求參數(shù)的值, 屬于中檔題. 本題涉及的考點(diǎn)有橢圓標(biāo)準(zhǔn)方程,點(diǎn)到直線距離公式,基本不等式,向量共線定理等,考查學(xué)生的運(yùn)算求解能力以及分析問題、解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中, 為棱上一動點(diǎn), 為底面上一動點(diǎn), 是的中點(diǎn),若點(diǎn)都運(yùn)動時(shí),點(diǎn)構(gòu)成的點(diǎn)集是一個(gè)空間幾何體,則這個(gè)幾何體是
A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運(yùn)動員每次投籃命中的概率為40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員三次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示沒有命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動員三次投籃恰有兩次命中的概率為( )
A. 0.35 B. 0.25
C. 0,20 D. 0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的右焦點(diǎn)坐標(biāo)為,求的值;
(2)由橢圓上不同三點(diǎn)構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有三個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.過平面外一點(diǎn)作這個(gè)平面的垂面有且只有一個(gè)
B.過直線外一點(diǎn)作這條直線的平行平面有且只有一個(gè)
C.過直線外一點(diǎn)作這條直線的垂線有且只有一條
D.過平面外的一條斜線作這個(gè)平面的垂面有且只有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知實(shí)數(shù).滿足方程,當(dāng)()時(shí),由此方程可以確定一個(gè)偶函數(shù),則拋物線的焦點(diǎn)到點(diǎn)的軌跡上點(diǎn)的距離最大值為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列, 都是單調(diào)遞增數(shù)列,若將這兩個(gè)數(shù)列的項(xiàng)按由小到大的順序排成一列(相同的項(xiàng)視為一項(xiàng)),則得到一個(gè)新數(shù)列.
(1)設(shè)數(shù)列、分別為等差、等比數(shù)列,若, , ,求;
(2)設(shè)的首項(xiàng)為1,各項(xiàng)為正整數(shù), ,若新數(shù)列是等差數(shù)列,求數(shù)列 的前項(xiàng)和;
(3)設(shè)(是不小于2的正整數(shù)),,是否存在等差數(shù)列,使得對任意的,在與之間數(shù)列的項(xiàng)數(shù)總是?若存在,請給出一個(gè)滿足題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分圖象,其圖象與y軸交于點(diǎn)(0,)
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若 , 求-的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com