【題目】已知為坐標(biāo)原點(diǎn),橢圓 的左焦點(diǎn)是,離心率為,且上任意一點(diǎn)的最短距離為.

(1)求的方程;

(2)過(guò)點(diǎn)的直線(不過(guò)原點(diǎn))與交于兩點(diǎn), 為線段的中點(diǎn).

(i)證明:直線的斜率乘積為定值;

(ii)求面積的最大值及此時(shí)的斜率.

【答案】(1);(2)(i)見解析;(ii)面積的最大值是,此時(shí)的斜率為.

【解析】試題分析:1由題設(shè)可以得到關(guān)于的方程組為,從而,故,所以橢圓的方程為.(2)設(shè)直線為: , , , ,聯(lián)立直線的方程和橢圓的方程并消元后可以得到,利用韋達(dá)定理得到,,從而為定值.利用弦長(zhǎng)公式和點(diǎn)到直線的距離可得,,從而最后利用基本不等式可以得到面積的最大值為且此時(shí)也就是.

解析:(1)由題意得,解得,∴, ,∴橢圓的方程為.

(2)(i)設(shè)直線為: , , ,由題意得,

,∴,即,由韋達(dá)定理得: , ,∴, ,∴,∴,∴直線的斜率乘積為定值.

(ii)由(i)可知:

,又點(diǎn)到直線的距離,

的面積

,令,則,∴ ,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí),且滿足,∴面積的最大值是,此時(shí)的斜率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面是邊長(zhǎng)為2的菱形,且, ,四棱錐的體積為2,點(diǎn)在平面內(nèi)的正投影為,且,點(diǎn)在線段上,且

)證明:直線平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為萬(wàn)元時(shí),銷售量萬(wàn)件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬(wàn)件還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬(wàn)元/萬(wàn)件.

(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷費(fèi)用萬(wàn)元的函數(shù);

2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形的邊長(zhǎng)為,且其

三個(gè)頂點(diǎn)均在拋物線.

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)動(dòng)直線與拋物線相切于點(diǎn),與直線

相交于點(diǎn).證明以為直徑的圓恒過(guò)軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計(jì)),上下底面均為邊長(zhǎng)為5的正三角形,側(cè)棱為10,側(cè)面AA1B1B水平放置,如圖所示,點(diǎn)D、E、F、G分別在棱CA、CB、C1B1C1A1,水面恰好過(guò)點(diǎn)D,E,F,C,CD=2

(1)證明:DEAB;

()若底面ABC水平放置時(shí),求水面的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大型景區(qū)有兩條直線型觀光路線 , ,點(diǎn)位于的平分線上,且與頂點(diǎn)相距1公里.現(xiàn)準(zhǔn)備過(guò)點(diǎn)安裝一直線型隔離網(wǎng) (分別在上),圍出三角形區(qū)域,且都不超過(guò)5公里.設(shè) (單位:公里).

(Ⅰ)求的關(guān)系式;

(Ⅱ)景區(qū)需要對(duì)兩個(gè)三角形區(qū)域 進(jìn)行綠化.經(jīng)測(cè)算, 區(qū)城每平方公里的綠化費(fèi)用是區(qū)域的兩倍,試確定的值,使得所需的總費(fèi)用最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過(guò)點(diǎn)A垂直的直線交軸負(fù)半軸于點(diǎn),且,若過(guò) , 三點(diǎn)的圓恰好與直線相切.過(guò)定點(diǎn)的直線與橢圓交于, 兩點(diǎn)(點(diǎn)在點(diǎn), 之間).

Ⅰ)求橢圓的方程;Ⅱ)若實(shí)數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy 中,曲線C的參數(shù)方程為 (是參數(shù),0≤≤π),以O(shè) 為極點(diǎn),以x 軸的正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線C 的極坐標(biāo)方程;

(Ⅱ)直線l1,的極坐標(biāo)方程是2psin(θ+)+=0,直線l2:θ =與曲線C的交點(diǎn)為P,與直線l1的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件。已知設(shè)備甲每天的租賃費(fèi)為200元,設(shè)備乙每天的租賃費(fèi)為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案