【題目】公元五世紀,數學家祖沖之估計圓周率的值的范圍是:,為紀念數學家祖沖之在圓周率研究上的成就,某教師在講授概率內容時要求學生從小數點后的6位數字1,4,1,5,9,2中隨機選取兩個數字做為小數點后的前兩位(整數部分3不變),那么得到的數字大于3.14的概率為( )
A.B.C.D.
科目:高中數學 來源: 題型:
【題目】設 (,).
(1)若展開式中第5項與第7項的系數之比為3∶8,求k的值;
(2)設(),且各項系數,,,…,互不相同.現把這個不同系數隨機排成一個三角形數陣:第1列1個數,第2列2個數,…,第n列n個數.設是第i列中的最小數,其中,且i,.記的概率為.求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形中,,,,,,點E在上,且,將三角形沿線段折起到的位置,(如圖2).
(Ⅰ)求證:平面平面;
(Ⅱ)在線段上存在點F,滿足,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求圓的極坐標方程與直線的直角坐標方程;
(2)設直線與圓相交于,兩點,求圓在,處兩條切線的交點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年新型冠狀病毒肺炎蔓延全國,作為主要戰(zhàn)場的武漢,僅用了十余天就建成了“小湯山”模式的火神山醫(yī)院和雷神山醫(yī)院,再次體現了中國速度.隨著疫情發(fā)展,某地也需要參照“小湯山”模式建設臨時醫(yī)院,其占地是出一個正方形和四個以正方形的邊為底邊、腰長為400m的等腰三角形組成的圖形(如圖所示),為使占地面積最大,則等腰三角形的底角為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱的側棱和底面垂直,且所有頂點都在球O的表面上,側面的面積為.給出下列四個結論:
①若的中點為E,則平面;
②若三棱柱的體積為,則到平面的距離為3;
③若,,則球O的表面積為;
④若,則球O體積的最小值為.
當則所有正確結論的序號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com