【題目】商店出售茶壺和茶杯,茶壺定價每個20元,茶杯每個5元,該商店推出兩種優(yōu)惠辦法:(1)買一個茶壺贈一個茶杯;(2)按總價的92%付款.
某顧客需購買茶壺4個,茶杯若干個(不少于4個),若購買茶杯數(shù)x個,付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買同樣多的茶杯時,兩種辦法哪一種更優(yōu)惠。
【答案】當(dāng)購買34只茶杯時,兩法付款相同.
當(dāng)4x<34時,<優(yōu)惠辦法(1)省錢,
當(dāng)x34時,<,優(yōu)惠辦法(2)省錢.
【解析】
主要考查一次函數(shù)模型的應(yīng)用。解答此類題目,注意遵循“審清題意,設(shè)出變元,列出關(guān)系,解決問題,寫出結(jié)語(答)”等步驟。分別計算,加以比較。
解:由優(yōu)惠辦法(1)可得函數(shù)關(guān)系為
=204+5(x-4)=5x+60(x4,且xN);
由優(yōu)惠辦法(2)可得=(5x+204)92%=4.6x+73.6(x4,且xN)
-=0.4x-13.6(x4,且xN),令-=0,得x=34.
所以,當(dāng)購買34只茶杯時,兩法付款相同.
當(dāng)4x<34時,<優(yōu)惠辦法(1)省錢,
當(dāng)x34時,<,優(yōu)惠辦法(2)省錢.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:空間直角坐標(biāo)系O﹣xyz中,過點(diǎn)P(x0,y0,z0)且一個法向量為=(a,b,c)的平面α的方程為a(x﹣x0)+b(y﹣y0)+c(z﹣z0)=0;過點(diǎn)P(x0,y0,z0)且一個方向向量為=(u,v,w)(uvw≠0)的直線l的方程為,閱讀上面材料,并解決下面問題:已知平面α的方程為x+2y﹣2z﹣4=0,直線l是兩平面3x﹣2y﹣7=0與2y﹣z+6=0的交線,則直線l與平面α所成角的大小為( 。
A. arcsinB. arcsin
C. arcsinD. arcsin
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)會議中,有五位教師來自三所學(xué)校,其中學(xué)校有位,學(xué)校有位,學(xué)校有位,F(xiàn)在五位老師排成一排照相,若要求來自同一學(xué)校的老師不相鄰,則共有_______種不同的站隊方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過點(diǎn)M(1,),過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)滿足,則稱比接近
(1)若4比接近0,求的取值范圍;
(2)對于任意的兩個不等正數(shù),求證:比接近;
(3)若對于任意的非零實(shí)數(shù),實(shí)數(shù)比接近,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a∈R).
(1)若曲線y=f(x)在x=e處切線的斜率為﹣1,求此切線方程;
(2)若f(x)有兩個極值點(diǎn)x1,x2,求a的取值范圍,并證明:x1x2>x1+x2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將寬和長都分別為x,的兩個矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來的兩個矩形的頂點(diǎn)都在同一個圓上,且兩矩形長所在的直線互相垂直的圖形,
求y關(guān)于x的函數(shù)解析式;
當(dāng)x,y取何值時,該正十字形的外接圓面積最小,并求出其最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com