19.已知tanx=$\sqrt{3}$,則x的集合為( 。
A.{x|x=2kπ+$\frac{4π}{3}$,k∈Z}B.{x|x=2kπ+$\frac{π}{3}$,k∈Z}C.{$\frac{4π}{3}$,$\frac{π}{3}$}D.{x|x=kπ+$\frac{π}{3}$,k∈Z}

分析 根據(jù)tanx的性質(zhì)可得答案.

解答 解:由tanx=$\sqrt{3}$,可得x=$\frac{π}{3}$+kπ.
那么x的集合為{x|x=$\frac{π}{3}$+kπ,k∈Z}
故選D

點評 本題考查了正切函數(shù)的性質(zhì)以及特殊值的計算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點,PO⊥平面ABCD,PO=1,M為PD的中點.
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)設(shè)直線AM與平面ABCD所成的角為α,二面角M-AC-B的大小為β,求sinαcosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC的面積為$5\sqrt{3}$,$A=\frac{π}{6}$,AB=5,則BC=(  )
A.$2\sqrt{3}$B.$2\sqrt{6}$C.$3\sqrt{2}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-$\frac{{x}^{2}-a}{x}$,a為常數(shù).
(1)求證:x≥lnx+1;
(2)當a=0時,求y=f(x)•f($\frac{1}{x}$)的最小值;
(3)若不等式f(x)<(a-1)x對?x∈(1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.甲乙丙三人代表班級參加校運會的跑步,跳遠,鉛球比賽,每人參加一項,每項都要有人參加,他們的身高各不同,現(xiàn)了解到已下情況:
(1)甲不是最高的;(2)最高的是沒報鉛球;(3)最矮的參加了跳遠;(4)乙不是最矮的,也沒參加跑步.
可以判斷丙參加的比賽項目是跑步.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.定義在[-3,-1]∪[1,3]上的函數(shù)y=f(x)是奇函數(shù),其部分圖象如圖所示.
(1)請在坐標系中補全函數(shù)f(x)的圖象;
(2)比較f(1)與f(3)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),對任意實數(shù)x,不等式$2x≤f(x)≤\frac{1}{2}{(x+1)^2}$恒成立,
(Ⅰ)求f(-1)的取值范圍;
(Ⅱ)對任意x1,x2∈[-3,-1],恒有|f(x1)-f(x2)|≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(cosφ,sinφ)
(1)若|θ-φ|=$\frac{π}{3}$,求|$\overrightarrow{a}$-$\overrightarrow$|的值;
(2)若θ+φ=$\frac{π}{3}$,記f(θ)=$\overrightarrow{a}$•$\overrightarrow$-λ|$\overrightarrow{a}$+$\overrightarrow$|,θ∈[0,$\frac{π}{2}$].當1≤λ≤2時,求f(θ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=2sinπx與函數(shù)$y=\frac{1}{1-x}$的圖象在區(qū)間[-2,4]上交點的橫坐標依次分別為x1,x2,…,xn,則$\sum_{i=1}^{n}$xi=( 。
A.4B.6C.8D.10

查看答案和解析>>

同步練習(xí)冊答案