11.已知α是第三象限角,則$\frac{α}{2}$是(  )
A.第一象限角B.第二象限角
C.第一或第四象限角D.第二或第四象限角

分析 先根據(jù)α所在的象限確定α的范圍,進(jìn)而確定$\frac{α}{2}$的范圍,進(jìn)而看當(dāng)k為偶數(shù)和為奇數(shù)時(shí)所在的象限.

解答 解:∵解:∵α是第三象限角,即$2kπ+π<α<2kπ+\frac{3}{2}π,k∈Z$.
當(dāng)k為偶數(shù)時(shí),$\frac{α}{2}$為第二象限角;
當(dāng)k為奇數(shù)時(shí),$\frac{α}{2}$為第四象限角.
故選:D.

點(diǎn)評(píng) 本題主要考查了半角的三角函數(shù).解題的關(guān)鍵是根據(jù)角的范圍確定其所在的象限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某校開(kāi)設(shè)A類(lèi)選修課3門(mén),B類(lèi)選修課3門(mén),一位同學(xué) 從中選3門(mén).若要求兩類(lèi)課程中各至少選一門(mén),則不同的選法共有( 。
A.3種B.6種C.9種D.18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是ρ=$\frac{24}{4cosθ+3sinθ}$,以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;
(2)若用($\frac{x}{2\sqrt{2}},\frac{y}{2}$)代換曲線C2的普通方程中的(x,y)得到曲線C3的方程,若M,N分別是曲線C1和曲線C3上的動(dòng)點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某服裝超市舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),顧客消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性抽出3個(gè)小球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸到2個(gè)紅球則打6折,若摸到1個(gè)紅球,則打7折;若沒(méi)有摸到紅球,則不打折;
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回的摸取,連續(xù)3次,每摸到1個(gè)紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿(mǎn)1000元,則該顧客選擇哪種抽獎(jiǎng)方案更合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|2x-a|+a,函數(shù)g(x)=|2x-1|.
(1)若當(dāng)g(x)≤5時(shí),恒有f(x)≤6,求實(shí)數(shù)a的最大值;
(2)若當(dāng)x∈R時(shí),f(x)+g(x)≥3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.定積分${∫}_{-1}^{1}$[xcosx+(x+1)ex]dx的值為e+e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若a>b>c,且a+b+c=0,則$\frac{a}{c}$的取值范圍是$(-2,-\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線且l:mx+y+3m-$\sqrt{3}$=0與圓x2+y2=12交于A,B兩點(diǎn),過(guò)A,B分別作l的垂線與x軸交于C,D兩點(diǎn),若|AB|=2$\sqrt{3}$,則|CD|=( 。
A.4B.6C.2$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=x2-2x的單調(diào)遞減區(qū)間為(-∞,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案