已知P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為(  )
分析:如圖所示,過(guò)點(diǎn)P作PM⊥l,垂足為M,連接FM,利用拋物線的定義可得|PM|=|FP|.可知當(dāng)PQ∥x軸時(shí),點(diǎn)P、Q、M三點(diǎn)共線,因此|PM|+|PQ|取得最小值|QM|,求出即可.
解答:解:設(shè)準(zhǔn)線為l:x=-1,焦點(diǎn)為F(1,0).
如圖所示,過(guò)點(diǎn)P作PM⊥l,垂足為M,連接FM,則|PM|=|FP|.
故當(dāng)PQ∥x軸時(shí),|PM|+|PQ|取得最小值|QM|=2-(-1)=3.
設(shè)點(diǎn)P(x,1),代入拋物線方程12=4x,解得x=
1
4
,∴P(
1
4
,1)

故選B.
點(diǎn)評(píng):熟練掌握拋物線的定義及其三點(diǎn)共線時(shí)|PQ|+|PM|取得最小值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4x的焦點(diǎn),過(guò)P的直線l與拋物線交與A,B兩點(diǎn),若Q在直線l上,且滿足|
AP
||
QB
|=|
AQ
||
PB
|
,則點(diǎn)Q總在定直線x=-1上.試猜測(cè)如果P為橢圓
x2
25
+
y2
9
=1
的左焦點(diǎn),過(guò)P的直線l與橢圓交與A,B兩點(diǎn),若Q在直線l上,且滿足|
AP
||
QB
|=|
AQ
||
PB
|
,則點(diǎn)Q總在定直線
 
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4(x-1)上動(dòng)點(diǎn),PA⊥y軸交y于A,點(diǎn)B在y軸上,且B點(diǎn)分向量
OA
的比為1:2,求BP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4x的焦點(diǎn),過(guò)P的直線l與拋物線交與A、B兩點(diǎn),若點(diǎn)Q在直線l上,且滿足AP•QB=AQ•PB,則點(diǎn)Q總在定直線x=-1上.試猜測(cè)如果點(diǎn)P為橢圓
x2
16
+
y2
9
=1
的左焦點(diǎn),過(guò)P的直線l與橢圓交與A、B兩點(diǎn),點(diǎn)Q在直線l上,且滿足AP•QB=AQ•PB,則點(diǎn)Q總在定直線
x=-
16
7
7
x=-
16
7
7
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)寧市微山一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為( )
A.(,-1)
B.(,1)
C.(1,2)
D.(1,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案