【題目】已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)當(dāng)a>0時(shí),用作差法證明:f( )< [f(x1)+f(x2)];
(2)已知當(dāng)x∈[0,1]時(shí),|f(x)|≤1恒成立,試求實(shí)數(shù)a的取值范圍.
【答案】
(1)證明:∵f(x)=ax2+x,
∴f( )﹣ [f(x1)+f(x2)]=
= = = .
∵a>0,又 ,∴ ,
∴f( )< [f(x1)+f(x2)]
(2)解:由題意,得﹣1≤ax2+x≤1對(duì)x∈[0,1]恒成立.
1°當(dāng)x=0時(shí),a∈R;
2°當(dāng)x≠0時(shí), .
令 ∈[1,+∞),
記g(t)=t2﹣t≥0,∴a≤0,
h(t)=﹣t2﹣t≤﹣2,則a≥﹣2.
∴﹣2≤a≤0,又a≠0.
∴﹣2≤a<0.
【解析】(1)把f( )、 [f(x1)+f(x2)]分別代入函數(shù)解析式,作差判斷差的符號(hào)證明f( )< [f(x1)+f(x2)];(2)由|f(x)|≤1恒成立,得﹣1≤ax2+x≤1對(duì)x∈[0,1]恒成立,當(dāng)x=0時(shí),可得a∈R;當(dāng)x≠0時(shí),分離參數(shù)a得到 ,令 ∈[1,+∞),求出二次函數(shù)的最值可得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最大值及其相應(yīng)的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=a分別與曲線y=2(x+1),y=x+lnx交于A、B,則|AB|的最小值為( )
A.3
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)求值:
(1)(1+tan2θ)cos2θ
(2)已知 ,求2+sinθcosθ﹣cos2θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答
(1)利用“五點(diǎn)法”畫出函數(shù) 在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.
(2)并說(shuō)明該函數(shù)圖像可由y=sinx(x∈R)的圖像經(jīng)過(guò)怎樣平移和伸縮變換得到的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤(rùn)2千元和3千元,試問(wèn)工廠每天應(yīng)生產(chǎn)A、B型桌子各多少?gòu),才能獲得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=a,an+1=can+1﹣c(n∈N*),其中a,c為實(shí)數(shù),且c≠0. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)系式中正確的是( )
A.sin 11°<cos 10°<sin 168°
B.sin 168°<sin 11°<cos 10°
C.sin 11°<sin 168°<cos 10°
D.sin 168°<cos 10°<sin 11°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=3x2﹣2x,數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn< 對(duì)所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com