【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點的極坐標(biāo)為,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程;

2)設(shè)點上,點上(異于極點),若四點依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.

【答案】1;(2

【解析】

1)先根據(jù)平方關(guān)系消元得曲線的直角坐標(biāo)方程,再根據(jù)將直角坐標(biāo)方程化為極坐標(biāo)方程,最后代入點極坐標(biāo),可求出的值,進(jìn)而得出答案;

2)先設(shè)直線的極坐標(biāo)方程為,代入,根據(jù)成等比數(shù)列得,代入化簡可得,進(jìn)而可得出答案.

1)曲線的直角坐標(biāo)方程為,化簡得,

,,所以.

代入點,可得,解得,

因為,所以,所以曲線的極坐標(biāo)方程為.

2)由題意,可設(shè)直線的極坐標(biāo)方程為,設(shè)點,則.

聯(lián)立,得,所以,.

聯(lián)立,得.

因為成等比數(shù)列,所以,即.

所以,解得.

所以的極坐標(biāo)方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時間/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是“恰當(dāng)回歸方程”.

(1)從這組數(shù)據(jù)中隨機選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時間不相鄰的概率;

(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

(3)為了使等候的乘客不超過人,試用(2)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘.

附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,是正三角形,的交點恰好是中點,又,.

(1)求證:

(2)設(shè)的中點,點在線段上,若直線平面,求的長;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個五位自然數(shù)數(shù)稱為跳躍數(shù),如果同時有(例如1328440329都是跳躍數(shù),而12345,54371,94333都不是跳躍數(shù)),則由1,2,3,45組成沒有重復(fù)數(shù)字且1,4不相鄰的跳躍數(shù)共有_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是R上的偶函數(shù),對于都有成立,且,當(dāng),且時,都有.則給出下列命題:

;

函數(shù)圖象的一條對稱軸為

函數(shù)在[﹣9,﹣6]上為減函數(shù);方程在[﹣9,9]上有4個根;

其中正確的命題序號是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有唯一一個整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.

(1)求證:平面平面

(2)若點在線段上,且,當(dāng)三棱錐的體積為時,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點PPMN的頂點,M(﹣20),N20),直線PM,PN的斜率之積為﹣

1)求點P的軌跡E的方程;

2)設(shè)四邊形ABCD的頂點都在曲線E上,且ABCD,直線AB,CD分別過點(﹣10),(1,0),求四邊形ABCD的面積為時,直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斐波那契數(shù)列()又稱黃金分割數(shù)列,因數(shù)學(xué)家列昂納多斐波那契()以兔子繁殖為例子而引入,故又稱為兔子數(shù)列”.在數(shù)學(xué)上,斐波納契數(shù)列被以下遞推的方法定義:數(shù)列滿足:,,現(xiàn)從數(shù)列的前2024項中隨機抽取1項,能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案