【題目】公司從某大學招收畢業(yè)生,經(jīng)過綜合測試,錄用了14名男生和6名女生,這20名畢業(yè)生的測試成績(單位:分)如下:
男:165 166 168 172 173 174 175 176 177 182 184 185 193 194
女:168 177 178 185 186 192
公司規(guī)定:成績在180分以上(包括180分)者到“甲部門”工作;180分以下者到“乙部門”工作.
(1)求男生成績的中位數(shù)及女生成績的平均數(shù).
(2)如果用分層隨機抽樣的方法從“甲部門”人選和“乙部門”人選中共選取5人,再從這5人中選2人,那么至少有一人是“甲部門”人選的概率是多少?
【答案】(1)中位數(shù)是175.5,平均數(shù)181;(2).
【解析】
(1)根據(jù)中位數(shù)的計算方法,可求得男生成績的中位數(shù),再由平均數(shù)的計算公式,可得女生成績的平均數(shù);
(2)先利用分層隨機抽樣的方法,求得從“甲部門”抽取2人選,在“乙部門”抽取3,再結(jié)合古典概型的概率的計算公式,即可求解.
(1)由題意,男生共有14人,將男生成績按從小到大的順序排列,中間兩個成績175和176,根據(jù)中位數(shù)的計算方法,可得男生成績的中位數(shù)是,
由平均數(shù)的計算公式,可得女生成績的平均數(shù).
(2)用分層隨機抽樣的方法從“甲部門”人選和“乙部門”人選共20人中抽取5人,
所以每個人被抽中的概率是.
由題意可知,“甲部門”共有8人,“乙部門”共有12人,
所以選取的“甲部門”的人選有(人),
“乙部門”的人選有(人),
記選中的“甲部門”的人選為,,選中的“乙部門”的人選為,,,
從這5人中選2人的所有可能結(jié)果為,,,,,,,,,,共10個基本事件,
其中事件“至少有一人是“甲部門”人選”包含,,,,,,,共有7個基本事件,
所概率為.
科目:高中數(shù)學 來源: 題型:
【題目】有2002名運動員,號碼依次為.從中選出若干名運動員參加儀仗隊,但要使剩下的運動員中沒有一個人的號碼數(shù)等于另外兩人的號碼數(shù)的乘積.那么,被選為儀仗隊的運動員至少能有多少人?給出你的選取方案,并簡述理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從一批草莓中,隨機抽取個,其重量(單位:克)的頻率分布表如下:
分組(重量) | ||||
頻數(shù)(個) |
已知從個草莓中隨機抽取一個,抽到重量在的草莓的概率為.
(1)求出,的值;
(2)用分層抽樣的方法從重量在和的草莓中共抽取個,再從這個草莓中任取個,求重量在和中各有個的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某直三棱柱被削去上底后所得幾何體的左視圖、俯視圖、直觀圖,在直觀圖中,M是BD的中點,左視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(Ⅰ)求該幾何體的表面積和體積;
(Ⅱ)求點C到平面MAB的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)代社會對破譯密碼的難度要求越來越高.有一種密碼把英文的明文(真實文)按字母分解,其中英文的a,b,…,z這26個字母(不論大小寫)依次對應1,2,…,26這26個自然表,見表
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
給出如下一個變換公式:利用它可將明文轉(zhuǎn)換成密文,如,即h變成q;,即e變成c,按上述公式,若將某明文譯成的密文是shxc,那么,原來的明文是( ).
A. lhho B. ohhl C. love D. eovl
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個十進制正整數(shù)中,如果它含有偶數(shù)(包括零)個數(shù)字 8 ,則稱它為“優(yōu)數(shù)” ,否則就稱它為“非優(yōu)數(shù)” .那么,長度(位數(shù))不超過 (是正整數(shù))的所有“優(yōu)數(shù)” 的個數(shù)是 __________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知常數(shù)項為的函數(shù)的導函數(shù)為,其中為常數(shù).
(1)當時,求的最大值;
(2)若在區(qū)間(為自然對數(shù)的底數(shù))上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某校高一100名學生的期末考試英語成績(他們的英語成績都在80分140分之間),將他們的英語成績(單位:分)分成:,,,,六組,得到如圖所示的部分頻率分布直方圖,已知成績處于內(nèi)與內(nèi)的頻數(shù)之和等于成績處于內(nèi)的頻數(shù),根據(jù)圖中的信息,回答下列問題:
(1)求頻率分布直方圖中未畫出的小矩形的面積之和;
(2)求成績處于內(nèi)與內(nèi)的頻率之差;
(3)用分層抽樣的方法從成績不低于120分的學生中選取一個容量為6的樣本,將該樣本看成一個總體,從中任選2人,求這2人中恰有一人成績低于130分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com