分析 (1)利用正弦函數(shù)的周期性以及圖象的對稱性求得ω的值,可得函數(shù)的解析式,再利用正弦函數(shù)的單調性、圖象的對稱性求得函數(shù)f(x)的單調區(qū)間,對稱中心.
(2)令t=cosx,t∈(0,1),根據(jù)m=-2(t+$\frac{1}{t}$ ),以及函數(shù)m在(0,1)上單調遞減,求得m的范圍.
解答 解:(1)∵函數(shù)$f(x)=cos(ωx+\frac{π}{3})(ω>0)$,圖象上任意兩條相鄰對稱軸間的距離為$\frac{π}{2}$.
∴$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{2}$,$ω=2,f(x)=cos(2x+\frac{π}{3})$.
令2kπ-π≤2x+$\frac{π}{3}$≤2kπ,求得kπ-$\frac{2π}{3}$≤x≤kπ-$\frac{π}{6}$,可得函數(shù)的單調遞增區(qū)間$[{kπ-\frac{2π}{3},kπ-\frac{π}{6}}]k∈Z$;
同理,令2kπ≤2x+$\frac{π}{3}$≤2kπ+π,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,可得函數(shù)的調遞減區(qū)間$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}]k∈Z$.
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,可得函數(shù)的對稱中心為 $({\frac{kπ}{2}+\frac{π}{12},0})k∈Z$.
(2)令t=cosx,t∈(0,1)則2t2+mt+2=0在(0,1)上有解,m=-2(t+$\frac{1}{t}$ ),
令$k(t)=(t+\frac{1}{t})$,任取0<t1<t2<1,有$k({t_1})-k({t_2})=({t_1}-{t_2})(1-\frac{1}{{{t_1}{t_2}}})>0$,
因此$k(t)=(t+\frac{1}{t})$在(0,1)上單調遞減,因此m<-2k(1)=-4,
所以m范圍{m|m<-4}.
點評 本題主要考查正弦函數(shù)的單調性、周期性以及圖象的對稱性,函數(shù)的單調性的定義,求函數(shù)的值域,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,e] | B. | (1,e] | C. | (1+$\frac{1}{e}$,e] | D. | [1+$\frac{1}{e}$,e] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | P10=$\frac{1}{10}$P1 | B. | P10=$\frac{1}{9}$P1 | C. | P10=0 | D. | P10=P1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-4,0] | B. | [-4,-2]∪[-1,0] | C. | (-4,0] | D. | (-4,-2]∪(-1,0] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com