若函數(shù)f(x)在區(qū)間(a,b)上為增函數(shù),在區(qū)間(b,c)上也是增函數(shù),則函數(shù)f(x)在區(qū)間(a,c)上


  1. A.
    必是增函數(shù)
  2. B.
    必是減函數(shù)
  3. C.
    是增函數(shù)或是減函數(shù)
  4. D.
    無(wú)法確定增減性
D
分析:由已知中函數(shù)f(x)在區(qū)間(a,b)上為增函數(shù),在區(qū)間(b,c)上也是增函數(shù),但函數(shù)在區(qū)間(a,c)上是否連續(xù)未知,由于函數(shù)的單調(diào)性是一個(gè)局部性質(zhì),故函數(shù)f(x)在區(qū)間(a,c)上的單調(diào)性無(wú)法確定.
解答:若函數(shù)在區(qū)間(a,c)上是連續(xù)的
則∵函數(shù)f(x)在區(qū)間(a,b)上為增函數(shù),在區(qū)間(b,c)上也是增函數(shù),
則函數(shù)f(x)在區(qū)間(a,c)上必是增函數(shù)
若函數(shù)在區(qū)間(a,c)上不是連續(xù)的
則無(wú)法判斷函數(shù)f(x)在區(qū)間(a,c)上的單調(diào)性
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的判斷與證明,其中準(zhǔn)確理解函數(shù)單調(diào)性是一個(gè)局部性質(zhì)與區(qū)間有關(guān),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+
ax
(a∈R),函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于點(diǎn)A(1,2)對(duì)稱.
(1)求函數(shù)g(x)的解析式;
(2)若關(guān)于x的方程g(x)=a有且僅有一個(gè)實(shí)數(shù)解,求a的值,并求出方程的解;
(3)若函數(shù)f(x)在區(qū)間[2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1-a
2
x2-ax-a,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(III)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3](t∈[-3,-1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log
1
2
(x2-mx-m)

①若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
②若函數(shù)f(x)在區(qū)間(-∞,1-
3
)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+
3
2
(2a-1)x2-6x(a∈R)

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(-1,f(-1))處的切線方程;
(2)當(dāng)a=
1
3
時(shí),求f(x)的極大值和極小值;
(3)若函數(shù)f(x)在區(qū)間(-∞,-3)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3ax-2x2+lnx,a為常數(shù).
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案