12.已知函數(shù)f(x)=2sin(2x-$\frac{π}{4}$).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若x∈[0,$\frac{3π}{4}$],求f(x)的取值范圍.

分析 (1)由條件利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)區(qū)間.
(2)由條件利用正弦函數(shù)的定義域和值域求得f(x)的取值范圍.

解答 解:(1)對于函數(shù)f(x)=2sin(2x-$\frac{π}{4}$),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,
求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,
可得函數(shù)的減區(qū)間為[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.
(2)若x∈[0,$\frac{3π}{4}$],則2x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{5π}{4}$],故f(x)∈[-$\sqrt{2}$,1].

點(diǎn)評 本題主要考查正弦函數(shù)的單調(diào)性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校高三年級800名學(xué)生在一次百米測試中,成績?nèi)吭?2秒到17秒之間,抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據(jù)上述分組得到的頻率分布直方圖.
(1)若成績小于13秒被認(rèn)為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數(shù);
(2)請估計本年級800名學(xué)生中,成績屬于第三組的人數(shù);
(3)若樣本中第一組只有一名女生,第五組只有一名男生,現(xiàn)從第一、第五組中各抽取1名學(xué)生組成一個實驗組,求所抽取的2名同學(xué)中恰好為一名男生和一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系中,|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,$\overrightarrow{a}$,$\overrightarrow$如圖所示,求它們的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=cos(x-$\frac{π}{3}$),則該函數(shù)的單調(diào)增區(qū)間是[2kπ+$\frac{4π}{3}$,2kπ+$\frac{7π}{3}$],k∈Z,該函數(shù)圖象的對稱中心坐標(biāo)是(kπ+$\frac{5π}{6}$,0),k∈Z,對稱軸方程是x=kπ+$\frac{π}{3}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)M是AB的中點(diǎn),求DB1與CM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義函數(shù)f(x)=2|x+5|-|x+1|,數(shù)列a1,a2,a3…滿足an+1=f(an),n∈N*.若要使a1,a2,…an,…成等差數(shù)列.則a1的取值范圍為( 。
A.a1≥-5B.a1≥-1C.a1≥-1或a1≤-5D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,點(diǎn)M是AD的中點(diǎn),點(diǎn)P是BM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC,取BD的中點(diǎn)O,以點(diǎn)O為原點(diǎn),OD,OP所在直線為y,z軸,建立空間直角坐標(biāo)系Oxyz
求證:PQ∥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且F1,F(xiàn)2分別是橢圓C的左右焦點(diǎn),點(diǎn)M(0,4),$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=13.
(1)求橢圓C的方程;
(2)過A(0,1)作直線l與橢圓的另一交點(diǎn)為B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{5}$,求橢圓上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(1,-1),則2$\overrightarrow{a}$+$\overrightarrow$=( 。
A.10B.(5,5)C.(5,6)D.(5,7)

查看答案和解析>>

同步練習(xí)冊答案