如圖,橢圓上頂點為,軸正半軸上一點,為橢圓上異于的一點,且

(1)若,求的值;

(2)若過、、三點的圓恰好與直線相切,求橢圓方程。

解:(1)

由橢圓離心率,可得,   

由題意知,所以直線的斜率為

,得,所以直線的斜率為,

設(shè),則,所以,即,

又設(shè),則,,

,得,即,

在橢圓上,所以,

,帶入上式,可得,

所以的值為

(2)設(shè)的中點為,則,

所以過三點的圓的圓心,半徑為,

又因為此圓與相切,所以,解得,所以,

橢圓方程為。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C方程為
x2
a2
+
y2
b2
=1
(a>b>0),點A1,A2為橢圓C的左、右頂點.
(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足AA2⊥BA2,求證:直線l過定點,并求出該點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(二)文數(shù)學(xué)卷(解析版) 題型:解答題

(本題滿分12分)如圖,橢圓C方程為 (),點為橢圓C的左、右頂點。

(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足,求證:直線過定點,并求出該點的坐標(biāo)。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中高二第一次階段測試數(shù)學(xué)試卷(奧數(shù)班)(解析版) 題型:解答題

如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為,線段的中點分別為,且△ 是面積為4的直角三角形.

(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(Ⅱ)過做直線交橢圓于P,Q兩點,使,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年山東省聊城市高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,橢圓上頂點為A,Q為x軸正半軸上一點,P為橢圓上異于A的一點,且
(1)若的值;
(2)若過A、Q、F三點的圓恰好與直線+3=0相切,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案