12.已知命題p:?x∈R,x2+3x=4,則¬p是?x∈R,x2+3x≠4.

分析 由已知中的原命題,結(jié)合特稱命題否定的定義,可得答案.

解答 解:∵命題p:?x∈R,x2+3x=4,
∴命題¬p:?x∈R,x2+3x≠4,
故答案為:?x∈R,x2+3x≠4.

點評 本題考查的知識點是特稱命題的否定,難度不大,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{a}{3}$x3-$\frac{a+1}{2}$x2+x+b,其中a,b∈R.
(Ⅰ)若函數(shù)y=f(x)的極小值為4,且在點x=$\frac{1}{3}$處取到極大值,求函數(shù)f(x)的解析式;
(Ⅱ)當a>0時,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)={sin^2}ωx+\sqrt{3}sinωxcosωx-\frac{1}{2}(ω>0)$的最小正周期為π.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,已知ABCD是直角梯形,∠BAD=90°,AD∥BC,AD=2AB=2BC,PA⊥面ABCD.
(I)證明:PC⊥CD;
(II)在線段PA上確定一點E,使得BE∥面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.我們知道:在平面內(nèi),點(x0,y0)到直線Ax+By+C=0的距離公式為d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通過類比的方法,可求得:在空間中,點(2,4,1)到直線x+2y+2z+3=0的距離為( 。
A.3B.5C.$\frac{{5\sqrt{21}}}{7}$D.$3\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若x>0,y>0,x+xy=2,則x+y的最小值是2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知α,β是兩個不重合的平面,m,n是兩條不同的直線,則下列命題中正確的是( 。
A.若m∥α,m∥β,則α∥βB.若m∥n,m∥α,則n∥α
C.若α⊥β,m⊥α,n⊥β,則m⊥nD.若α⊥β,m⊥α,n∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.過點P(4,6)引直線l分別交x,y軸正半軸于A、B兩點,當△OAB面積最小時,直線l的方程是3x+2y-24=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a=log2.10.3,b=log0.20.3,c=0.2-3.1,則a,b,c的大小關(guān)系( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步練習冊答案