7.我們知道:在平面內(nèi),點(diǎn)(x0,y0)到直線Ax+By+C=0的距離公式為d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通過類比的方法,可求得:在空間中,點(diǎn)(2,4,1)到直線x+2y+2z+3=0的距離為( 。
A.3B.5C.$\frac{{5\sqrt{21}}}{7}$D.$3\sqrt{5}$

分析 類比點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,可知在空間中,d=$\frac{|2+8+2+3|}{\sqrt{1+4+4}}$=5

解答 解:類比點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,可知在空間中,點(diǎn)P(x0,y0,z0)到直線Ax+By+Cz+D=0的距離d=$\frac{|A{x}_{0}+B{y}_{0}+C{z}_{0}+D|}{\sqrt{{A}^{2}+{B}^{2}+{C}^{2}}}$
點(diǎn)(2,4,1)到直線x+2y+2z+3=0的距離d=$\frac{|2+8+2+3|}{\sqrt{1+4+4}}$=5.
故選B.

點(diǎn)評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在明朝程大位《算法統(tǒng)宗》中,有這樣的一首歌謠,叫做浮屠增級歌:“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增.共燈三百八十一,請問尖頭幾盞燈?”這首古詩描述的這個(gè)寶塔,其古稱浮屠,本題說它一共有七層寶塔,每層懸掛的紅燈數(shù)是上一層的2倍,則這個(gè)塔頂有( 。┍K燈.
A.1B.2C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平面α∩平面β=m,直線l?α,則“l(fā)⊥m”是“l(fā)⊥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如果曲線2|x|-y-4=0與曲線x2+λy2=4(λ<0)恰好有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是[-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{e^x}{e}-lnx$.
(I)若f(x)在點(diǎn)(1,f(x))的切線l垂直于y軸,求切線l的方程;
(II)求f(x)的最小值;
(III)若關(guān)于x的不等式${e^{x-1}}+1-f(x)>\frac{{k({x-1})}}{x}$在(1,+∞)恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知命題p:?x∈R,x2+3x=4,則¬p是?x∈R,x2+3x≠4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2x3-3x2-12x+5.
(Ⅰ)求曲線y=f(x)在點(diǎn)x=1處的切線方程;
(Ⅱ)求函數(shù)y=f(x)在[0,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)拋物線y2=4x的焦點(diǎn)為F,P為其上的一點(diǎn),O為坐標(biāo)原點(diǎn),若|OP|=|PF|,則△OPF的面積為(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(a)=($\sqrt{\frac{1-sinα}{1+sinα}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$)cos3α+2sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)(α為第三象限角).
(Ⅰ)若tanα=3,求f(α)的值;
(Ⅱ)若f(α)=$\frac{14}{5}$cosα,求tanα的值.

查看答案和解析>>

同步練習(xí)冊答案