4.若圓錐的底面與頂點(diǎn)都在球O的球面上,且圓錐的底面半徑為1,體積為π,則球O的表面積為( 。
A.$\frac{16π}{9}$B.$\frac{100π}{9}$C.25πD.36π

分析 先求出圓錐的高,再利用射影定理,求出R,即可求出球O的表面積.

解答 解:設(shè)圓錐的高為h,球O的半徑為R,則$\frac{1}{3}π×1×h$=π,
∴h=3,
由射影定理可得1=3×(2R-3),
∴R=$\frac{5}{3}$,
∴球O的表面積為4$π•\frac{25}{9}$=$\frac{100π}{9}$.
故選:B.

點(diǎn)評 本題考查球O的表面積,考查學(xué)生的計(jì)算能力,正確求出球O的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-n,bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.法國數(shù)學(xué)家棣莫弗,A.(De Moivre,Abraham)證明了這樣一個(gè)結(jié)論(也稱棣莫弗定理)(cosα+isinα)n=cos(nα)+isin(nα)(這里i為虛數(shù)單位,n為正整數(shù)),應(yīng)用此結(jié)論求下面式子的值
${C}_{7}^{0}$(cos$\frac{π}{7}$)7-${C}_{7}^{2}$(cos$\frac{π}{7}$)5(sin$\frac{π}{7}$)2+${C}_{7}^{4}$(cos$\frac{π}{7}$)3(sin$\frac{π}{7}$)4-${C}_{7}^{6}$(cos$\frac{π}{7}$)(sin$\frac{π}{7}$)6=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,已知A,B,C三點(diǎn)不共線,P為一定點(diǎn),O為平面ABC外任意一點(diǎn),則下列能表示向量$\overrightarrow{OP}$的為(  )
A.$\overrightarrow{OA}$+2$\overrightarrow{AB}$+2$\overrightarrow{AC}$B.$\overrightarrow{OA}$-3$\overrightarrow{AB}$-2$\overrightarrow{AC}$C.$\overrightarrow{OA}$+3$\overrightarrow{AB}$-2$\overrightarrow{AC}$D.$\overrightarrow{OA}$+2$\overrightarrow{AB}$-3$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lg($\sqrt{{x}^{2}+2}$+x)-lg$\sqrt{2}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性;
(3)若f(k•3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知平行六面體ABCD-A′B′C′D′,則下列四式中:
①$\overrightarrow{AB}$-$\overrightarrow{CB}$=$\overrightarrow{AC}$;
②$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{B′C}$+$\overrightarrow{CC′}$;
③$\overrightarrow{AA′}$=$\overrightarrow{CC′}$;
④$\overrightarrow{AB}$+$\overrightarrow{BB′}$+$\overrightarrow{BC}$+$\overrightarrow{C′C}$=$\overrightarrow{AC}$.
正確的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)A(1,2),B(3,1),則過AB中點(diǎn)垂直于直線x+y+1=0的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算:已知sinα+2cosα=0,求$\frac{sin(\frac{3}{2}π-α)-2cos(\frac{3}{2}π+α)}{cos(π-α)+sin(π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個(gè)橢圓的半焦距為2,離心率e=$\frac{2}{3}$,則它的短軸長是( 。
A.3B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

同步練習(xí)冊答案