精英家教網 > 高中數學 > 題目詳情
如圖,已知橢圓的左、右焦點分別為,下頂點為,點是橢圓上任一點,圓是以為直徑的圓.
⑴當圓的面積為,求所在的直線方程;
⑵當圓與直線相切時,求圓的方程;
;⑵; .
(1) 設,先求出,進而根椐圓的面積為,建立方程,解出,進而確定.PA的直線方程易求.
(2) 直線的方程為,且到直線的距離為
,得到,再根據點P在橢圓上滿足,兩方程聯(lián)立可得M的坐標,到此問題基本得到解決.
解:⑴易得,,設,
,
, ………………2
又圓的面積為,∴,解得,   ∴,
所在的直線方程為;……………5
⑵∵直線的方程為,且到直線的距離為
,  化簡得,………………………6
聯(lián)立方程組,解得.    ………………………10
時,可得,  ∴ 圓的方程為;………11
時,可得, ∴ 圓的方程為;…12
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的左、右頂點,直線軸交于點,點是橢圓上異于
的動點,直線分別交直線兩點.證明:恒為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的的右頂點為A,離心率,過左焦點作直線與橢圓交于點P,Q,直線AP,AQ分別與直線交于點
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經過焦點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是其橢圓上的任意一點,當為鈍角時,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系xOy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知中心在原點,焦點在x軸上的橢圓離心率為,且經過點,過橢圓的左焦點作直線交橢圓于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB。 
(1)求橢圓E的方程
(2)現將橢圓E上的點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼囊话,求所得曲線的焦點坐標和離心率
(3)是否存在直線,使得四邊形OAPB為矩形?若存在,求出直線的方程。若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點F是橢圓的右焦點,過原點的直線交橢圓于點A、P,PF垂直于x軸,直線AF交橢圓于點B,,則該橢圓的離心率=___▲___.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的離心率為,則實數的值為___________.              

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

是橢圓的不垂直于對稱軸的弦,的中點,為坐標原點,則____________

查看答案和解析>>

同步練習冊答案