分析 (Ⅰ)推導(dǎo)出AC⊥BD,PA⊥BD,由此能證明平面PBD⊥平面PAC.
(Ⅱ)設(shè)AC∩BD=O,以O(shè)為原點(diǎn),OA為x軸,OB為y軸,過(guò)O作平面ABCD的垂線為z軸,建立空間直角坐標(biāo)系,由此能求出平面APD與平面PBC所成二面角(銳角)的余弦值.
解答 證明:(Ⅰ)∵四棱錐P-ABCD中,底面ABCD是平行四邊形,
且PA⊥平面ABCD,PA=AB=AD=2,∠BAD=60°,
∴AC⊥BD,PA⊥BD,
∵PA∩AC=A,
∴BD⊥平面PAC,
∵BD?平面PBD,
∴平面PBD⊥平面PAC.
解:(Ⅱ)設(shè)AC∩BD=O,以O(shè)為原點(diǎn),OA為x軸,OB為y軸,過(guò)O作平面ABCD的垂線為z軸,
建立空間直角坐標(biāo)系,
A($\sqrt{3}$,0,0),P($\sqrt{3}$,0,2),D(0,-1,0),B(0,1,0),C(-$\sqrt{3}$,0,0),
$\overrightarrow{AP}$=(0,0,2),$\overrightarrow{AD}$=(-$\sqrt{3}$,-1,0),$\overrightarrow{BP}$=($\sqrt{3}$,-1,2),$\overrightarrow{BC}$=(-$\sqrt{3}$,-1,0),
設(shè)平面APD的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AP}=2z=0}\\{\overrightarrow{n}•\overrightarrow{AD}=-\sqrt{3}x-y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}=(1,-\sqrt{3}$,0),
設(shè)平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BP}=\sqrt{3}a-b+2c=0}\\{\overrightarrow{m}•\overrightarrow{BC}=-\sqrt{3}a-b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,-$\sqrt{3}$,-$\sqrt{3}$),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{4}{\sqrt{4}•\sqrt{7}}$=$\frac{2\sqrt{7}}{7}$.
∴平面APD與平面PBC所成二面角(銳角)的余弦值為$\frac{2\sqrt{7}}{7}$.
點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\sqrt{10}$ | C. | 4 | D. | $\frac{2+\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)x=2時(shí),y有最小值$\frac{4\sqrt{3}}{3}$ | B. | 當(dāng)x=2時(shí),有最大值$\frac{4\sqrt{3}}{3}$ | ||
C. | 當(dāng)x=$\sqrt{2}$時(shí),y有最小值2 | D. | 當(dāng)x=$\sqrt{2}$時(shí),y有最大值2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
收入x(萬(wàn)元) | 6 | 8 | 10 | 12 | 14 |
支出y(萬(wàn)元) | 6 | 7 | 8 | 9 | 10 |
A. | 15萬(wàn)元 | B. | 14萬(wàn)元 | C. | 13萬(wàn)元 | D. | 12萬(wàn)元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓柱 | B. | 圓錐 | C. | 棱錐 | D. | 棱柱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
喜愛(ài)運(yùn)動(dòng) | 不喜愛(ài)運(yùn)動(dòng) | 總計(jì) | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計(jì) | 30 |
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com