2.直線l過點P(0,2)且與直線2x-y=0平行,則直線l在x軸上的截距為-1.

分析 設(shè)與直線2x-y=0平行的直線方程為 2x-y+c=0,把點P(0,2)代入求得c的值,即可求得所求的直線的方程,從而求出直線在x軸上的截距即可.

解答 解:設(shè)與直線2x-y=0平行的直線方程為 2x-y+c=0,
把點P(0,2)代入可得 0-2+c=0,c=2,
故所求的直線的方程為 2x-y+2=0,
令y=0,解得:x=-1,
故直線l在x軸上的截距為-1,
故答案為:-1.

點評 本題主要考查利用待定系數(shù)法求直線的方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A,B滿足,集合A={x|x<a},B={x||x-2|≤2,x∈R},若已知“x∈A”是“x∈B”的必要不充分條件,則a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面內(nèi),定點A,B,C,D滿足|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,|$\overrightarrow{DA}$|•|$\overrightarrow{DB}$|=|$\overrightarrow{DB}$|•|$\overrightarrow{DC}$|=|$\overrightarrow{DC}$|•|$\overrightarrow{DA}$|=-4,動點P,M滿足|$\overrightarrow{AP}$|=2,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|的最大值是3$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在區(qū)間[0,1]上隨機(jī)取一個數(shù)x,則滿足不等式“3x-1>0”的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知x+x-1=3,求${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$的值.
(2)解關(guān)于x的不等式a${\;}^{2{x}^{2}-3x+2}$>a${\;}^{2{x}^{2}+2x-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦點分別是F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點P為橢圓上一動點,△F1PF2內(nèi)切圓面積的最大值是$\frac{π}{3}$.
(1)求橢圓C的方程;
(2)A是橢圓C的左頂點,斜率為k(k>0)的直線交C于A.M兩點,點N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論中,表述正確的是( 。
A.∅∈NB.{2}∈NC.$\sqrt{2}$∈ND.{$\sqrt{2}$}⊆N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{m}$,$\overrightarrow{n}$為單位向量,其夾角為60°,則($\overrightarrow{m}$+$\overrightarrow{n}$)2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),曲線C2的直角坐標(biāo)方程為x2+(y-1)2=1,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C1和C2的極坐標(biāo)方程;
(Ⅱ)已知射線l1:θ=α(0<α<$\frac{π}{2}$),將l1逆時針旋轉(zhuǎn)$\frac{π}{6}$得到l2:θ=α+$\frac{π}{6}$,且l1與C1交于O,P兩點,l2與C2交于O,Q兩點,求|OP|•|OQ|取最大值時點P的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案