【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為( )
A.
B.2π
C.
D.
【答案】D
【解析】解:設(shè)該球的半徑為R, 則AB=2R,2AC= AB= ,
∴AC= R,
由于AB是球的直徑,
所以△ABC在大圓所在平面內(nèi)且有AC⊥BC,
在Rt△ABC中,由勾股定理,得:
BC2=AB2﹣AC2=R2 ,
所以Rt△ABC面積S= ×BC×AC= ,
又PO⊥平面ABC,且PO=R,四面體P﹣ABC的體積為 ,
∴VP﹣ABC= = ,
即 R3=9,R3=3 ,
所以:球的體積V球= ×πR3= ×π×3 =4 π.
故選D.
設(shè)該球的半徑為R,則AB=2R,2AC= AB= ,故AC= R,由于AB是球的直徑,所以△ABC在大圓所在平面內(nèi)且有AC⊥BC,由此能求出球的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數(shù)f(x)的解析式及其對(duì)稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),定點(diǎn) 點(diǎn)為的中點(diǎn),動(dòng)點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程
(2)過點(diǎn)的直線交軌跡于兩點(diǎn),為上任意一點(diǎn),直線交于兩點(diǎn),以為直徑的圓是否過軸上的定點(diǎn)? 若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P的元素個(gè)數(shù)為個(gè)且元素為正整數(shù),將集合P分成元素個(gè)數(shù)相同且兩兩沒有公共元素的三個(gè)集合A、B、C,即 ,,,,其中 ,, 若集合A、B、C中的元素滿足 ,,,2,,則稱集合P為“完美集合”.
若集合2,,2,3,4,5,,判斷集合P和集合Q是否為“完美集合”?并說明理由;
已知集合x,3,4,5,為“完美集合”,求正整數(shù)x的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:,直線l:,A為直線l上一點(diǎn).
若,過A作圓M的兩條切線,切點(diǎn)分別為P,Q,求的大小;
若圓M上存在兩點(diǎn)B,C,使得,求點(diǎn)A橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+ sin2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )= ,△ABC的面積為3 ,求a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com