已知函數(shù)f(x)=
x
x+1
,
(1)用函數(shù)單調(diào)性定義證明:f(x)在(-1,+∞)是增函數(shù);
(2)試求f(x)=
lnx
lnx+1
在區(qū)間[2,e2]上的最大值與最小值.
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)單調(diào)性的定義,設(shè)x1,x2∈(-1,+∞),且x1<x2,通過作差證明f(x1)<f(x2)即可;
(2)lnx在[2,e2]上是增函數(shù),且ln2>0,所以根據(jù)(1)及單調(diào)性的定義,x增大時,lnx增大,f(x)增大,也就是x增大時,f(x)增大,所以說f(x)在[2,e2]上是增數(shù),所以f(x)的最大值為f(e2),最小值為f(2),所以帶入解析式求出即可.
解答: 解:(1)證明:
設(shè)x1,x2∈(-1,+∞),且x1<x2,則:
f(x1)-f(x2)=
x1
x1+1
-
x2
x2+1
=
x1-x2
(x1+1)(x2+1)
;
∵x1,x2∈(-1,+∞),且x1<x2;
∴x1-x2<0,x1+1>0,x2+1>0;
∴f(x1)<f(x2);
∴f(x)在(-1,+∞)上是增函數(shù);
(2)lnx在[2,e2]上是增函數(shù),ln2>0;
∴由(1)知f(x)=
lnx
lnx+1
在區(qū)間[2,e2]上是增函數(shù);
∴f(2)=
ln2
ln2+1
是f(x)在[2,e2]上的最小值;
f(e2)=
2
3
是f(x)在[2,e2]上的最大值.
點評:考查單調(diào)性的定義,以及利用單調(diào)性的定義證明函數(shù)單調(diào)性的過程,以及對數(shù)函數(shù)的單調(diào)性,根據(jù)函數(shù)單調(diào)性求最值的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算:-
3-2
2
6
-
3+2
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an-an+1=2an•an+1,數(shù)列{bn}滿足2an(2+log2bn)-an-1=0
(1)求數(shù)列{an}的通項公式和{bn}的前n項和Sn
(2)若數(shù)列{cn}滿足cn=
1
log2bn+2
,設(shè)數(shù)列{cn2}的前n項和為Tn,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=x2-
1
x
+lnx的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
4
+
y2
2
=1的左焦點作傾斜角為
π
3
的弦AB,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程4x+m•2x+m+1=0有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個質(zhì)量為m=3kg的物體作直線運動,設(shè)運動距離s(單位:m)與時間t(單位:s)的關(guān)系可用函數(shù)s(t)=1+t2表示,并且物體的動能Ek=
1
2
mv2.求物體開始運動后第5s時的動能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
1
x
1
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,0<ω≤2,0≤φ<π)是R上的偶函數(shù),其圖象經(jīng)過點(0,2),又f(x)的圖象關(guān)于N(
4
,0)對稱,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案