【題目】已知橢圓過點(diǎn)P(2,1).
(1)求橢圓C的方程,并求其離心率;
(2)過點(diǎn)P作x軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對稱點(diǎn)為A',直線A'P與C交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說明理由.
【答案】(1)見解析;(2)見解析
【解析】
(1)將點(diǎn)代入橢圓方程,求出,結(jié)合離心率公式即可求得橢圓的離心率;(2)設(shè)直線,,設(shè)點(diǎn)的坐標(biāo)為,,分別求出,,根據(jù)斜率公式,以及兩直線的位置關(guān)系與斜率的關(guān)系即可得結(jié)果.
(1)由橢圓方程橢圓過點(diǎn)P(2,1),可得.
所以,
所以橢圓C的方程為+=1,離心率e==,
(2)直線AB與直線OP平行.證明如下:
設(shè)直線,,
設(shè)點(diǎn)A的坐標(biāo)為(x1,y1),B(x2,y2),
由得,
∴,∴
同理,所以,
由,
有,
因?yàn)?/span>A在第四象限,所以,且A不在直線OP上.
∴,
又,故,
所以直線與直線平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域?yàn)?/span>,函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.
(1)求定義域和值域;
(2)試用單調(diào)性的定義法解決問題:若存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減,上單調(diào)遞增,求實(shí)數(shù)的取值范圍并用表示;
(3)是否存在實(shí)數(shù),使成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)兩點(diǎn),滿足條件:①點(diǎn),都在函數(shù)的圖像上;②點(diǎn),關(guān)于原點(diǎn)對稱.則稱是函數(shù)的一個“伙伴點(diǎn)組”(點(diǎn)組與看作同一個“伙伴點(diǎn)組”).已知函數(shù)有兩個“伙伴點(diǎn)組”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中, , , , , .
(1)若,求直線與平面所成角的正弦值;
(2)若二面角的大小為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義域?yàn)?/span>的函數(shù),對任意,都滿足:,,且當(dāng)時,.
(1)請指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、零點(diǎn);
(2)試證明是周期函數(shù),并求其在區(qū)間()上的解析式;
(3)方程有三個不等根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬只并全部銷售完,每萬只的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時,該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,橢圓:的離心率為,直線與交于,兩點(diǎn),長度的最大值為4.
(1)求的方程;
(2)直線與軸的交點(diǎn)為,當(dāng)直線變化(不與軸重合)時,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0,a≠1).
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)若f(t2t1)+f(t2)<0,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com