【題目】若平面直角坐標(biāo)系內(nèi)兩點(diǎn),滿足條件:①點(diǎn),都在函數(shù)的圖像上;②點(diǎn),關(guān)于原點(diǎn)對(duì)稱.則稱是函數(shù)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)組看作同一個(gè)“伙伴點(diǎn)組”).已知函數(shù)有兩個(gè)“伙伴點(diǎn)組”,則實(shí)數(shù)的取值范圍是__________

【答案】

【解析】

由題意可知,“伙伴點(diǎn)組的點(diǎn)滿足:都在函數(shù)圖像上,且關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.將問題轉(zhuǎn)化為函數(shù)的圖像與直線的交點(diǎn)個(gè)數(shù)為即可.

由題意可知,“伙伴點(diǎn)組的點(diǎn)滿足:都在函數(shù)圖像上,且關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.

可作出函數(shù)關(guān)于原點(diǎn)對(duì)稱的函數(shù)的圖像(如圖),使它與直線的交點(diǎn)個(gè)數(shù)為即可.

當(dāng)直線的圖像相切時(shí),設(shè)切點(diǎn)為,

的導(dǎo)數(shù)為,

解得可得函數(shù)的圖像過點(diǎn)的切線的斜率為

結(jié)合圖像可知當(dāng)時(shí)兩個(gè)函數(shù)圖像有兩個(gè)交點(diǎn).

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),動(dòng)點(diǎn)到定點(diǎn)的距離與到定直線的距離之比為

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若軌跡上的動(dòng)點(diǎn)到定點(diǎn)的距離的最小值為1,求的值;

3)設(shè)點(diǎn)、是軌跡上兩個(gè)動(dòng)點(diǎn),直線與軌跡的另一交點(diǎn)分別為、,且直線的斜率之積等于,問四邊形的面積是否為定值?請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列命題:

既是奇函數(shù)又是偶函數(shù),則;

是奇函數(shù),且,則至少有三個(gè)零點(diǎn);

上不是單調(diào)函數(shù),則不存在反函數(shù);

的最大值和最小值分別為、,則的值域?yàn)?/span>

則其中正確的命題個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),,若對(duì)任意,且,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2xgx)=x2ax(其中aR.對(duì)于不相等的實(shí)數(shù)x1,x2,設(shè)m,n,現(xiàn)有如下命題:

對(duì)于任意不相等的實(shí)數(shù)x1x2,都有m0

對(duì)于任意的a及任意不相等的實(shí)數(shù)x1,x2,都有n0;

對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得mn;

對(duì)于任意的a,存在不相等的實(shí)數(shù)x1,x2,使得m=-n.

其中真命題有___________________(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為點(diǎn)的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),且傾斜角為.

(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)的直角坐標(biāo);

(2)設(shè)直線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn)P2,1).

1)求橢圓C的方程,并求其離心率;

2)過點(diǎn)Px軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)為A',直線A'PC交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于,設(shè)點(diǎn)的軌跡為,斜率為的直線過點(diǎn),且與軌跡交于兩點(diǎn).

1)寫出軌跡的方程;

2)如果,求的值;

3)是否存在直線,使得在直線上存在點(diǎn),滿足為等邊三角形?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案