若函數(shù)f(x)的零點與g(x)=4x+2x-2的零點之差的絕對值不超過0.25,則f(x)可以是( )
A.f(x)=8x-2
B.f(x)=(x+1)2
C.f(x)=ex-1
D.f(x)=ln(x-
【答案】分析:先判斷g(x)的零點所在的區(qū)間,再求出各個選項中函數(shù)的零點,看哪一個能滿足與g(x)=4x+2x-2的零點之差的絕對值不超過0.25.
解答:解:∵g(x)=4x+2x-2在R上連續(xù),且g()==<0,g()=2+1-2=1>0.
設g(x)=4x+2x-2的零點為x,則
又f(x)=8x-2零點為x=;f(x)=(x+1)2的零點為x=-1
f(x)=ex-1零點為x=0;f(x)=ln(x-)零點為x=,
∴||,即A中的函數(shù)符合題意
故選A.
點評:本題考查判斷函數(shù)零點所在的區(qū)間以及求函數(shù)零點的方法,屬于基礎試題,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的零點與g(x)=4x+2x-2的零點之差的絕對值不超過0.25,則f(x)可以是( 。
A、f(x)=4x-1
B、f(x)=(x-1)2
C、f(x)=ex-1
D、f(x)=ln(x-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x99
99
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x99
99
.若函數(shù)f(x)的零點為x1,函數(shù)g(x)的零點為x2,則有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
1x
,若函數(shù)f(x)的零點所在的區(qū)間為(k,k+1)(k∈Z),則k=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•天津模擬)若函數(shù)f(x)的零點與g(x)=4x+2x-2的零點之差的絕對值不超過0.25,則f(x)可以是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)若函數(shù)f(x)的零點與g(x)=4x+2x-2的零點之差的絕對值不超過0.25,則f(x)可以是( 。

查看答案和解析>>

同步練習冊答案