以坐標(biāo)原點(diǎn)為極點(diǎn),橫軸的正半軸為極軸的極坐標(biāo)系下,有曲線C:ρ=4cosθ,過極點(diǎn)的直線θ=φ(φ∈R且φ是參數(shù))交曲線C于兩點(diǎn)0,A,令OA的中點(diǎn)為M.
(1)求點(diǎn)M在此極坐標(biāo)下的軌跡方程(極坐標(biāo)形式).
(2)當(dāng)φ=
3
時,求M點(diǎn)的直角坐標(biāo).
考點(diǎn):軌跡方程,簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)由點(diǎn)A滿足ρ=4cosθ,即可得出OA的中點(diǎn)M的軌跡為ρ=2cosθ.
(2)當(dāng)φ=
3
時,ρ=2cos
3
=1,即可得出點(diǎn)M的直角坐標(biāo).
解答: 解:(1)∵點(diǎn)A滿足ρ=4cosθ,過極點(diǎn)的直線θ=φ(φ∈R且φ是參數(shù))交曲線C于兩點(diǎn)0,A.
∴OA的中點(diǎn)M的軌跡為ρ=2cosθ,
(2)當(dāng)φ=
3
時,ρ=2cos
3
=1,
x=1×cos
3
=
1
2
,y=1×cos
3
=-
3
2

∴M點(diǎn)的直角坐標(biāo)為(
1
2
,-
3
2
)
點(diǎn)評:本題考查了中點(diǎn)坐標(biāo)公式、極坐標(biāo)化為直角坐標(biāo)方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2
+k,k為已知的實(shí)數(shù),
(1)求函數(shù)f(x)的值域;并判斷其在定義域上的單調(diào)性(不必證明);
(2)當(dāng)k=-2時,設(shè)f(x)≤0的解集為A,函數(shù)g(x)=lg(sin2
π
6
x-3sin
π
6
x•cos
π
6
x+acos2
π
6
x)的定義域為B,若(A∪B)⊆B,求實(shí)數(shù)a的取值范圍.
(3)若存在實(shí)數(shù)a,b≥-2且a<b,使f(x)在[a,b]上的值域為[2a,2b],求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0,則有( 。
A、f(0)>f(2)
B、f(0)=f(2)
C、f(0)<f(2)
D、f(0),f(2)關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C過點(diǎn)(1,0)且與直線x=-1相切.
(1)求動圓圓心C的軌跡E方程;
(2)設(shè)A,B為軌跡E上異于原點(diǎn)O的兩個不同點(diǎn),直線OA,OB的傾斜角分別為α,β,且α+β=45°.當(dāng)α,β變化時,求證:直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,BD的中點(diǎn).求證:
(1)求直線AE與平面BDD1B1所成角的正弦值;
(2)EF⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是橢圓
x2
25
+
y2
16
=1
上的一點(diǎn),F(xiàn)1,F(xiàn)2為焦點(diǎn),∠F1MF2=
π
6
,則△MF1F2的面積為( 。
A、
16
3
3
B、16(2+
3
)
C、16(2-
3
)
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x-
x
值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:(sin2α-cos2α)2=1-sin4α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扣人心弦的巴西世界足球杯已落下了帷幕,為了解市民對該屆世界杯的關(guān)注情況,某市足球協(xié)會針對該市市民組織了一次隨機(jī)調(diào)查,所抽取的樣本容量為120,調(diào)查結(jié)果如下:
收視情況看直播看轉(zhuǎn)播不看
人數(shù)(單位:人)604020
(1)若從這120人中按照分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再從這6人中隨機(jī)抽取3人頒發(fā)幸運(yùn)禮品,求這3人中至少有1人為“看直播”的概率;
(2)現(xiàn)從(1)所抽取的6人的問卷中抽3份,記“看直播”的問卷分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案