【題目】某電視臺問政直播節(jié)目首場內(nèi)容是“讓交通更順暢”.A、B、C、D四個管理部門的負(fù)責(zé)人接受問政,分別負(fù)責(zé)問政A、B、C、D四個管理部門的現(xiàn)場市民代表(每一名代表只參加一個部門的問政)人數(shù)的條形圖如下.為了了解市民對武漢市實施“讓交通更順暢”幾個月來的評價,對每位現(xiàn)場市民都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下面表格所示:
滿意 | 一般 | 不滿意 | |
A部門 | 50% | 25% | 25% |
B部門 | 80% | 0 | 20% |
C部門 | 50% | 50% | 0 |
D部門 | 40% | 20% | 40% |
(1)若市民甲選擇的是A部門,求甲的調(diào)查問卷被選中的概率;
(2)若想從調(diào)查問卷被選中且填寫不滿意的市民中再選出2人進(jìn)行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.
【答案】(1)0.1(2)
【解析】
(1)由條形統(tǒng)計圖中可以得到市民代表共200人,其中負(fù)責(zé)問政A部門的市民為40人,又由分層抽樣20份求出從A部門問卷中抽取了4份,繼而得到甲的調(diào)查問卷被選中的概率
(2)分別計算出分層抽樣20份中負(fù)責(zé)問政A,B,C,D四部門的市民人數(shù),其中可以得到不滿意的人數(shù),用枚舉法列出符合條件的情況,然后求出結(jié)果
解:(1)由條形圖可得,分別負(fù)責(zé)問政A,B,C,D四個管理部門的現(xiàn)場市民代表共有200人,其中負(fù)責(zé)問政A部門的市民為40人.
由分層抽樣可得從A部門問卷中抽取了份.設(shè)事件M=“市民甲被選中進(jìn)行問卷調(diào)查”,所以.
∴若甲選擇的是A部門,甲被選中問卷調(diào)查的概率是0.1.
(2)由圖表可知,分別負(fù)責(zé)問政A,B,C,D四部門的市民被選中進(jìn)行問卷調(diào)查的人數(shù)為4,5,6,5.其中不滿意的人數(shù)分別為1,1,0,2個.記對A部門不滿意的市民是a;對B部門不滿意的市民是b;對D部門不滿意的市民是c,d.
設(shè)事件N=“從填寫不滿意的市民中選出2人,至少有一人選擇的是D”.
從填寫不滿意的市民中選出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6個基本事件;而事件N有(a,c),(a,d),(b,c),(b,d),(c,d)共5個基本事件,所以.
∴這兩人中至少有一人選擇的是D的概率是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下結(jié)論錯誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.命題“”是“”的充分條件
C.命題“若,則有實根”的逆命題為真命題
D.命題“,則或”的否命題是“,則且”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面,且, , 是邊的中點.
(1)求證: 平面;
(2)若是線段上的動點(不含端點):問當(dāng)為何值時,二面角余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知知矩形中,點是邊上的點, 與相交于點,且,現(xiàn)將沿折起,如圖2,點的位置記為,此時.
(1)求證: 面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為,.
(1)求直線與圓相切的概率;
(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,證明: ;
(2)若關(guān)于的方程有且只有一個實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù), .
(1)試討論函數(shù)的單調(diào)性;
(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018安徽淮南市高三一模(2月)】已知函數(shù).
(I)若,討論函數(shù)的單調(diào)性;
(II)曲線與直線交于, 兩點,其中,若直線斜率為,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com