【題目】設(shè)函數(shù)f(x)= x2-mln x,g(x)=x2-(m+1)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥0時(shí),討論函數(shù)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù).
【答案】
(1)解:函數(shù)f(x)的定義域?yàn)?0,+∞),f′(x)= ,
當(dāng)m≤0時(shí),f′(x)≥0,所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,+∞),無單調(diào)減區(qū)間;
當(dāng)m>0時(shí), f′(x)= ;
當(dāng)0<x< 時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;當(dāng)x> 時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增.
綜上,當(dāng)m≤0時(shí),函數(shù)f(x)的單調(diào)增區(qū)間是(0,+∞),無單調(diào)減區(qū)間;當(dāng)m>0時(shí),函數(shù)f(x)的單調(diào)增區(qū)間是( ,+∞),單調(diào)減區(qū)間是(0, ).
(2)解:令F(x)=f(x)-g(x)=- x2+(m+1)x-mln x,x>0,問題等價(jià)于求函數(shù)F(x)的零點(diǎn)個(gè)數(shù),
當(dāng)m=0時(shí),F(xiàn)(x)=- x2+x,x>0,有唯一零點(diǎn);
當(dāng)m>0時(shí),F(xiàn)′(x)=- ,
當(dāng)m=1時(shí),F(xiàn)′(x)≤0,函數(shù)F(x)為減函數(shù),注意到F(1)= >0,F(xiàn)(4)=-ln 4<0,所以F(x)有唯一零點(diǎn);
當(dāng)m>1時(shí),由F′(x)<0得0<x<1或x>m,由F′(x)>0得1<x<m,所以函數(shù)F(x)在(0,1)和(m,+∞)上單調(diào)遞減,在(1,m)上單調(diào)遞增,注意到F(1)=m+ >0,
F(2m+2)=-mln(2m+2)<0,
所以F(x)有唯一零點(diǎn);
當(dāng)0<m<1時(shí),0<x<m或x>1時(shí),由F′(x)<0得,0<x<m或x>1,
由F′(x)>0得m<x<1,
所以函數(shù)F(x)在(0,m)和(1,+∞)單調(diào)遞減,在(m,1)單調(diào)遞增,又ln m<0,
所以F(m)= (m+1-2ln m)>0,
而F(2m+2)=-mln(2m+2)<0,所以F(x)有唯一零點(diǎn).
綜上,函數(shù)F(x)有唯一零點(diǎn),即當(dāng)m≥0時(shí)函數(shù)f(x)與g(x)圖象總有一個(gè)交點(diǎn).
【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)令F(x)=f(x)-g(x),問題等價(jià)于求F(x)的零點(diǎn)個(gè)數(shù),結(jié)合函數(shù)的單調(diào)性以及m的范圍,求出即可.
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關(guān)于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,曲線 的參數(shù)方程為 ( 為參數(shù)),在以 為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線 是圓心為 ,半徑為1的圓.
(1)求曲線 , 的直角坐標(biāo)方程;
(2)設(shè) 為曲線 上的點(diǎn), 為曲線 上的點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 中,點(diǎn) 在線段 上, , ,沿直線 將 翻折成 ,使點(diǎn) 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x= 時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A.①②
B.②③
C.③④⑤
D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)店和實(shí)體店各有利弊,兩者的結(jié)合將在未來一段時(shí)期內(nèi),成為商業(yè)的一個(gè)主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從 年 月起開展網(wǎng)絡(luò)銷售與實(shí)體店體驗(yàn)安裝結(jié)合的銷售模式.根據(jù)幾個(gè)月運(yùn)營(yíng)發(fā)現(xiàn),產(chǎn)品的月銷量 萬件與投入實(shí)體店體驗(yàn)安裝的費(fèi)用 萬元之間滿足 函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費(fèi)用支出為 萬元,產(chǎn)品每 萬件進(jìn)貨價(jià)格為 萬元,若每件產(chǎn)品的售價(jià)定為“進(jìn)貨價(jià)的 ”與“平均每件產(chǎn)品的實(shí)體店體驗(yàn)安裝費(fèi)用的一半”之和,則該公司最大月利潤(rùn)是萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式4ax-1<3x-4(a>0,且a≠1)對(duì)于任意的x>2恒成立,則a的取值范圍為( )
A.
B.
C.[2,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在 處的切線斜率為2.
(Ⅰ)求 的單調(diào)區(qū)間和極值;
(Ⅱ)若 在 上無解,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為 元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
求一輛普通6座以下私家車(車險(xiǎn)已滿三年)在下一年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元.且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com