直線l過點(diǎn)A(-2,3),且點(diǎn)B(1,-1)到該直線l的距離為3,則直線l的方程為
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:直線與圓
分析:當(dāng)直線l無斜率時(shí),方程為x+2=0,滿足題意;當(dāng)直線l有斜率時(shí),設(shè)方程為y-3=k(x+2),由點(diǎn)到直線的距離公式可k值,可得方程,綜合可得.
解答: 解:當(dāng)直線l無斜率時(shí),方程為x=-2即x+2=0,顯然滿足點(diǎn)B(1,-1)到該直線l的距離為3;
當(dāng)直線l有斜率時(shí),設(shè)方程為y-3=k(x+2)即kx-y+2k+3=0,
由題意可得
|k+1+2k+3|
k2+1
=3,解得k=-
7
24
,
∴直線l的方程為y-3=-
7
24
(x+2),化為一般式可得7x+24y-58=0
故答案為:x+2=0或7x+24y-58=0
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式,涉及分類討論的思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知斜三棱柱ABC-A1B1C1 的側(cè)面 A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2
3
,且AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成角的大。
(2)求側(cè)面A1ABB1與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用分析法或綜合法證明:當(dāng)x>0時(shí),sinx<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(
1
2
x-
π
6
)在區(qū)間[0,t]上恰好取得一個(gè)最大值,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-ex(e為自然對(duì)數(shù)的底數(shù)).
(I)當(dāng)a=
1
e
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(Ⅱ)當(dāng)2≤a≤e+2時(shí),求證f(x)≤2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)=ax2-bx+2(a≠0)的一個(gè)零點(diǎn)為1.
(1)求a,b的值;
(2)求函數(shù)y=f(x-1)在[0,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)),g(x)=
n
2
x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1-
n
2
,求T(x)在[0,1]上的最大值;
(2)若n=4時(shí)方程f(x)=g(x)在[0,2]上恰有兩個(gè)相異實(shí)根,求m的取值范圍;
(3)若m=-
15
2
,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2
15
2
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)正三棱柱的正視圖是正方形,且它的外接球的表面積等于
25π
3
,則這個(gè)正三棱柱的底面邊長(zhǎng)為(  )
A、
5
7
7
B、
4
7
C、
7
5
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=4,且滿足(2
a
-
b
)(
a
+2
b
)≥4,求
a
b
的夾角β的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案