(本小題滿分14分)
已知二次函數(shù),關(guān)于的不等式的解集為,其中為非零常數(shù).設(shè).
(1)求的值;
(2)R如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若,且,求證:N
(1)(2)當(dāng)時,取任意實數(shù), 函數(shù)有極小值點;
當(dāng)時,,函數(shù)有極小值點,有極大值點.
(其中, )
(3)① 當(dāng)時,左邊,右邊,不等式成立;② 假設(shè)當(dāng)N時,不等式成立,即,
則
.
也就是說,當(dāng)時,不等式也成立.
由①②可得,對N,都成立.
解析試題分析:(1)解:∵關(guān)于的不等式的解集為,
即不等式的解集為,
∴.
∴.
∴.
∴.
(2)解法1:由(1)得.
∴的定義域為.
∴.
方程(*)的判別式
.
①時,,方程(*)的兩個實根為
則時,;時,.
∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)有極小值點.
②當(dāng)時,由,得或,
若,則
故時,,
∴函數(shù)在上單調(diào)遞增.
∴函數(shù)沒有極值點.
若時,
則時,;時,;時,.
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)有極小值點,有極大值點.
綜上所述, 當(dāng)時,取任意實數(shù), 函數(shù)有極小值點;
當(dāng)時,,函數(shù)
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,使得
(3x1-x2)(x1-3x2)=-80成立.求實數(shù)a的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某售報亭每天以每份0.4元的價格從報社購進(jìn)若干份報紙,然后以每份1元的價格出售,如果當(dāng)天賣不完,剩下的報紙以每份0.1元的價格賣給廢品收購站.
(Ⅰ)若售報亭一天購進(jìn)270份報紙,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式.
(Ⅱ)售報亭記錄了100天報紙的日需求量(單位:份),整理得下表:
日需求量 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)一艘輪船在航行中每小時的燃料費和它的速度的立方成正比,已知在速度為每小時10公里時的燃料費是每小時8元,而其他與速度無關(guān)的費用是每小時128元.
(1)求輪船航行一小時的總費用與它的航行速度(公里/小時)的函數(shù)關(guān)系式;
(2)問此輪船以多大的速度航行時,能使每公里的總費用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)年中秋、國慶長假期間,由于國家實行座及以下小型車輛高速公路免費政策,導(dǎo)致在長假期間高速公路出現(xiàn)擁堵現(xiàn)象。長假過后,據(jù)有關(guān)數(shù)據(jù)顯示,某高速收費路口從上午點到中午點,車輛通過該收費站的用時(分鐘)與車輛到達(dá)該收費站的時刻之間的函數(shù)關(guān)系式可近似地用以下函數(shù)給出:
y=
求從上午點到中午點,通過該收費站用時最多的時刻。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某服裝廠某年1月份、2月份、3月份分別生產(chǎn)某名牌衣服1萬件、萬件、萬件,為了估測當(dāng)年每個月的產(chǎn)量,以這三個月的產(chǎn)品數(shù)量為依據(jù),用一個函數(shù)模型模擬該產(chǎn)品的月產(chǎn)量與月份的關(guān)系,模擬函數(shù)可選用函數(shù)(其中為常數(shù))或二次函數(shù)。又已知當(dāng)年4月份該產(chǎn)品的產(chǎn)量為萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com