已知f(x)=xlnax+b,曲線y=f(x)在點(e,f(e))處的切線為y=2,分別求a、b的值.
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求出函數(shù)的導數(shù),由條件可得斜率為0,即1+ln(ea)=0,可得a,再由f(e)=2,可得b.
解答: 解:f(x)=xlnax+b的導數(shù)為f′(x)=lnax+1,
由曲線y=f(x)在點(e,f(e))處的切線為y=2,
則1+ln(ea)=0,解得a=
1
e2
,
由f(e)=2可得eln(
1
e2
•e)+b=2,
解得b=e+2.
綜上可得a=
1
e2
,b=e+2.
點評:本題考查導數(shù)的幾何意義:函數(shù)在某點處的導數(shù)即為曲線在該點處的切線的斜率,正確求導是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過原點的一條直線l與函數(shù)y=x+
1
x
的圖象相交于A,B兩點,點A在第一象限,點B在第三象限,則線段AB的長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxcosx-
1
2

(1)求函數(shù)f(x)的最小正周期.
(2)已知a,b,c分別為△ABC的內角A、B、C的對邊,其中A為銳角,a=2
3
,c=4且f(A)=1,求b及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在拋物線y=x2上哪一點的切線平行于直線4x-y+1=0?由哪一點的切線垂直于這一直線?
(2)過原點作曲線C:y=ex的切線,求切點T的坐標.
(3)已知直線x-y-1=0與拋物線y=ax2相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
3x
,定義an=f(n),bn=log3
1
2
an+1).
(1)求數(shù)列{bn}的通項公式;
(2)求滿足方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+(3a+1)x+2a的遞減區(qū)間為(-∞,4),則(  )
A、a≤-3B、a≤3
C、a≤5D、a=-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2-3x-4的定義域是[-1,m],值域是[-
25
4
,0],則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx+
a(x+2)
x
,a∈R.
(1)當a=1時,求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)-
x
6
零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ABCD中,AD=BC.AD∥BC,且AB=3
2
,AD=2
3
.BD=
6
,沿BD將其折成一個二面角A-BD-C,使得AB⊥CD.
(1)求二面角A-BD-C的大小;
(2)求折后點A到面BCD的距離.

查看答案和解析>>

同步練習冊答案