【題目】為了調(diào)查患胃病是否與生活不規(guī)律有關,在患胃病與生活不規(guī)律這兩個分類變量的計算中,下列說法正確的是(

A. 越大,患胃病與生活不規(guī)律沒有關系的可信程度越大.

B. 越大,患胃病與生活不規(guī)律有關系的可信程度越小.

C.若計算得 ,經(jīng)查臨界值表知 ,則在 個生活不規(guī)律的人中必有 人患胃病.

D.從統(tǒng)計量中得知有 的把握認為患胃病與生活不規(guī)律有關,是指有 的可能性使得推斷出現(xiàn)錯誤.

【答案】D

【解析】

利用獨立性檢驗中反映兩個變量相關程度的參數(shù)的定義進行判斷即可.

越大,患胃病與生活不規(guī)律沒有關系的可信程度越小,

患胃病與生活不規(guī)律有關系的可信程度越大,故選項A,B不正確;

是檢驗患胃病與生活不規(guī)律相關程度的量,是相關關系,

而不是確定關系,是反映有關和無關的概率,故選項C不正確;

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分數(shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[4050),[50,60),[60,70),[70,80),[80,90),[90,100]

1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數(shù)據(jù)的中位數(shù);

2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016高考新課標II,理15)有三張卡片,分別寫有12,1323.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線平行OM,且與橢圓交于A、B兩個不同的點。

(Ⅰ)求橢圓方程;

()AOB為鈍角,求直線軸上的截距的取值范圍;

()求證直線MA、MB軸圍成的三角形總是等腰三角形。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A. 在回歸模型中,預報變量的值不能由解釋變量唯一確定

B. 若變量,滿足關系,且變量正相關,則也正相關

C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,將其變換后得到線性方程,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,部分對應值如下表,的導函數(shù)的圖象如圖所示。

X

-1

0

2

4

5

f(x)

1

2

0

2

1

下列關于函數(shù)的命題:

①函數(shù)是減函數(shù);

②如果當時,的最大值是2,那么t的最大值為4;③函數(shù)有4個零點,則

其中真命題的個數(shù)是( )

A. 3個 B. 2個 C. 1個 D. 0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上的點到它的兩個焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過這兩個焦點,點, 分別是橢圓的左、右頂點.

)求圓和橢圓的方程.

)已知, 分別是橢圓和圓上的動點( 位于軸兩側),且直線軸平行,直線 分別與軸交于點, .求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求該函數(shù)的最大值;

2)是否存在實數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對應的值;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案