分析 根據(jù)新定義求出函數(shù)的解析式,再根據(jù)分段函數(shù),得到${∫}_{0}^{5}$f(x)dx=${∫}_{0}^{2}$2xdx+${∫}_{2}^{4}$x2dx+${∫}_{4}^{5}$2xdx,根據(jù)定積分的計(jì)算法則計(jì)算即可.
解答 解:由題意可知:函數(shù)的解析式為:f(x)=$\left\{\begin{array}{l}{{2}^{x},-1<x<2或x>4}\\{{x}^{2},x≤-1或2≤x≤4}\end{array}\right.$,
則${∫}_{0}^{5}$f(x)dx=${∫}_{0}^{2}$2xdx+${∫}_{2}^{4}$x2dx+${∫}_{4}^{5}$2xdx=$\frac{{2}^{x}}{ln2}$|${\;}_{0}^{2}$+$\frac{{2}^{x}}{ln2}$|${\;}_{4}^{5}$+$\frac{1}{3}{x}^{3}$|${\;}_{2}^{4}$=$\frac{19}{ln2}$+$\frac{56}{3}$,
故答案為:$\frac{19}{ln2}$+$\frac{56}{3}$
點(diǎn)評 本題屬于新定義、分段函數(shù)以及定積分的計(jì)算的.在解答過程的當(dāng)中充分體現(xiàn)了分段函數(shù)的思想、分類討論的思想以及問題轉(zhuǎn)化的思想.值得同學(xué)們體會反思.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com