【題目】某學(xué)校有40名高中生參加足球特長生初選,第一輪測身高和體重,第二輪足球基礎(chǔ)知識(shí)問答,測試員把成績(單位:分)分組如下:第1,第2,第3,第4,第5,得到頻率分布直方圖如圖所示.

1)根據(jù)頻率分布直方圖估計(jì)成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)用分層抽樣的方法從成績?cè)诘?/span>34,5組的高中生中抽取6名組成一個(gè)小組,若再從這6人中隨機(jī)選出2人擔(dān)任小組負(fù)責(zé)人,求這2人來自第3,4組各1人的概率.

【答案】1)成績的平均值為87.25;(2.

【解析】

1)先由所有矩形面積和為1求出,然后算出平均值即可

2)先算出抽取的6人中第3,4,5組的人數(shù)分別為32,1,然后得出所有的基本事件的個(gè)數(shù)和列出這2人來自第34組各1人的基本事件即可.

1)因?yàn)?/span>,所以,

所以成績的平均值為

2)第3組學(xué)生人數(shù)為,第4組學(xué)生人數(shù)為,

5組學(xué)生人數(shù)為

所以抽取的6人中第3,45組的人數(shù)分別為3,21.

3組的3人分別記為,第4組的2人分別記為,

5組的1人記為,則從中選出2人的基本事件為共15個(gè),

從這6人中隨機(jī)選出2人擔(dān)任小組負(fù)責(zé)人,

2人來自第3,4組各1為事件,

則事件包含的基本事件為,,

,,共6個(gè),

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若a=1,求f(x)的極值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費(fèi)情況,隨機(jī)調(diào)查了100名學(xué)生,并將統(tǒng)計(jì)結(jié)果繪成直方圖如圖所示.

(1)試估計(jì)該校學(xué)生在校月消費(fèi)的平均數(shù);

(2)根據(jù)校服務(wù)部以往的經(jīng)驗(yàn),每個(gè)學(xué)生在校的月消費(fèi)金額(元)和服務(wù)部可獲得利潤(元),滿足關(guān)系式:根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:

(i)將校服務(wù)部從一個(gè)學(xué)生的月消費(fèi)中,可獲得的利潤記為,求的分布列及數(shù)學(xué)期望.

(ii)若校服務(wù)部計(jì)劃每月預(yù)留月利潤的,用于資助在校月消費(fèi)低于400元的學(xué)生,估計(jì)受資助的學(xué)生每人每月可獲得多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是等腰梯形,,,點(diǎn)的中點(diǎn),以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,平面平面,且為等邊三角形,若四棱錐的體積與四棱錐外接球的表面積大小之比為,則四棱錐的表面積為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若上恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:

①已知直線和平面,若,,則;

②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;

③雙曲線,則直線與雙曲線有且只有一個(gè)公共點(diǎn);

④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;

⑤過的直線與橢圓交于兩點(diǎn),線段中點(diǎn)為,設(shè)直線斜率為,直線的斜率為,則等于.

其中,正確命題的序號(hào)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,,四邊形為矩形,平面平面,.

(1)求證:平面⊥平面

(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,橢圓經(jīng)過橢圓C1的左焦點(diǎn)F 和上下頂點(diǎn)A,B.設(shè)斜率為k的直線l與橢圓C2相切,且與橢圓C1交于P,Q兩點(diǎn).

1)求橢圓C2的方程;

2)①若,求k的值;

②求PQ弦長最大時(shí)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案